Loading, please wait...
:

product description page

Geometriya Polugruppy Z= 0n. Prilozheniya K Kombinatorike, Algebra I Differentsial’nym Uravneniyam

Geometriya Polugruppy Z= 0n. Prilozheniya K Kombinatorike, Algebra I Differentsial’nym Uravneniyam - image 1 of 1

About this item

This vital contribution to the mathematical literature on combinatorics, algebra and differential equations develops two fundamental finiteness properties of the semigroup Z_(=0)^n that elucidate key aspects of theories propounded by, among others, Hilbert and Kouchnirenko. The authors provide explanations for numerous results in the field that appear at first glance to be unrelated. The first finiteness property relates to the fact that Z_(=0)^n can be represented in the form of a finite union of shifted n-dimensional octants, while the second asserts that any co-ideal of the semigroup can be represented as a finite, disjoint union of shifted co-ordinate octants. The applications of their work include proof that Hilbert’s implication that dimension d of the affine variety X equals the degree of Hilbert’s polynomial can be developed until its degree X equates to the leading coefficient of the Hilbert polynomial multiplied by d. The volume is a major forward step in this field.
Number of Pages: 120
Genre: Mathematics
Format: Hardcover
Publisher: Springer Verlag
Author: Sergey Chulkov
Language: English
Street Date: June 9, 2017
TCIN: 51776109
UPC: 9783642309878
Item Number (DPCI): 248-34-0344
If the item details above aren’t accurate or complete, we want to know about it. Report incorrect product info.
$47.45
MSRPReg: $49.95 Save $2.50 (5% off)
Shipping
not available
Not in stores

Guest reviews

Prices, promotions, styles and availability may vary by store & online. See our price match guarantee. See how a store is chosen for you.


*See offer details. Restrictions apply. Pricing, promotions and availability may vary by location and at Target.com.