Loading, please wait...
:

product description page

Neural Connectomics Challenge (Hardcover)

Neural Connectomics Challenge (Hardcover) - image 1 of 1

About this item

This book illustrates the thrust of the scientific community to use machine learning concepts for tackling a complex problem: given time series of neuronal spontaneous activity, which is the underlying connectivity between the neurons in the network? The contributing authors also develop tools for the advancement of neuroscience through machine learning techniques, with a focus on the major open problems in neuroscience.
While the techniques have been developed for a specific application, they address the more general problem of network reconstruction from observational time series, a problem of interest in a wide variety of domains, including econometrics, epidemiology, and climatology, to cite only a few.
The book is designed for the mathematics, physics and computer science communities that carry out research in neuroscience problems. The content is also suitable for the machine learning community because it exemplifies how to approach the same problem from different perspectives.
Genre: Computers + Internet
Series Title: Springer Series on Challenges in Machine Learning
Format: Hardcover
Publisher: Springer-Verlag New York Inc
Language: English
Street Date: June 4, 2017
TCIN: 52170625
UPC: 9783319530697
Item Number (DPCI): 248-42-8246
If the item details above aren’t accurate or complete, we want to know about it. Report incorrect product info.

Guest reviews

Prices, promotions, styles and availability may vary by store & online. See our price match guarantee. See how a store is chosen for you.