Sponsored

High Energy Radiation from Black Holes - (Princeton Astrophysics) by Charles D Dermer & Govind Menon (Paperback)

Create or manage registry

Sponsored

About this item

Highlights

  • Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes.
  • About the Author: Charles D. Dermer is a theoretical astrophysicist at the U.S. Naval Research Laboratory.
  • 568 Pages
  • Science, Physics
  • Series Name: Princeton Astrophysics

Description



Book Synopsis



Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systematic exposition of black-hole astrophysics and general relativity in order to understand how gamma rays, cosmic rays, and neutrinos are produced by black holes.

Beginning with Einstein's special and general theories of relativity, the authors give a detailed mathematical description of fundamental astrophysical radiation processes, including Compton scattering of electrons and photons, synchrotron radiation of particles in magnetic fields, photohadronic interactions of cosmic rays with photons, gamma-ray attenuation, Fermi acceleration, and the Blandford-Znajek mechanism for energy extraction from rotating black holes. The book provides a basis for graduate students and researchers in the field to interpret the latest results from high-energy observatories, and helps resolve whether energy released by rotating black holes powers the highest-energy radiations in nature. The wide range of detail will make High Energy Radiation from Black Holes a standard reference for black-hole research.



From the Back Cover



"Filling an important gap in a topical and fast-evolving area, this interesting book will be a valuable addition to the astrophysics literature. The scientific content is of a high quality, and includes a notable level of rigor in the derivations."--Peter Mészáros, Pennsylvania State University

"There is definite need for a book on this topic. Dermer and Menon have gathered together a wide range of useful results and the book's rigorous and comprehensive coverage of high-energy processes will be valuable to the advanced researcher in the field. Astronomers working on black-hole processes, jets, AGN, and gamma-ray bursts will want to have this for reference."--Andrew Fabian, University of Cambridge



Review Quotes




"Filling an important gap in a topical and fast-evolving area, this interesting book will be a valuable addition to the astrophysics literature. The scientific content is of a high quality, and includes a notable level of rigor in the derivations."--Peter Mészáros, Pennsylvania State University

"There is definite need for a book on this topic. Dermer and Menon have gathered together a wide range of useful results and the book's rigorous and comprehensive coverage of high-energy processes will be valuable to the advanced researcher in the field. Astronomers working on black-hole processes, jets, AGN, and gamma-ray bursts will want to have this for reference."--Andrew Fabian, University of Cambridge



About the Author



Charles D. Dermer is a theoretical astrophysicist at the U.S. Naval Research Laboratory. Govind Menon is professor of physics at Troy University.

Additional product information and recommendations

Sponsored

Similar items

Loading, please wait...

Your views

Loading, please wait...

More to consider

Loading, please wait...

Featured products

Loading, please wait...

Guest Ratings & Reviews

Disclaimer

Get top deals, latest trends, and more.

Privacy policy

Footer