EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Applied Machine Learning Explainability Techniques - by Aditya Bhattacharya (Paperback)

Applied Machine Learning Explainability Techniques - by  Aditya Bhattacharya (Paperback) - 1 of 1
$46.99 when purchased online
Target Online store #3991

About this item

Highlights

  • Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey Features: Explore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook Description: Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users.
  • Author(s): Aditya Bhattacharya
  • 306 Pages
  • Computers + Internet, Intelligence (AI) & Semantics

Description



Book Synopsis



Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems


Key Features:

  • Explore various explainability methods for designing robust and scalable explainable ML systems
  • Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems
  • Design user-centric explainable ML systems using guidelines provided for industrial applications


Book Description:

Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.

Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.

By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.


What You Will Learn:

  • Explore various explanation methods and their evaluation criteria
  • Learn model explanation methods for structured and unstructured data
  • Apply data-centric XAI for practical problem-solving
  • Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others
  • Discover industrial best practices for explainable ML systems
  • Use user-centric XAI to bring AI closer to non-technical end users
  • Address open challenges in XAI using the recommended guidelines


Who this book is for:

This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.

Dimensions (Overall): 9.25 Inches (H) x 7.5 Inches (W) x .64 Inches (D)
Weight: 1.16 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 306
Genre: Computers + Internet
Sub-Genre: Intelligence (AI) & Semantics
Publisher: Packt Publishing
Format: Paperback
Author: Aditya Bhattacharya
Language: English
Street Date: July 29, 2022
TCIN: 1005554705
UPC: 9781803246154
Item Number (DPCI): 247-42-1317
Origin: Made in the USA or Imported

Shipping details

Estimated ship dimensions: 0.64 inches length x 7.5 inches width x 9.25 inches height
Estimated ship weight: 1.16 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy