EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Applied Text Analysis with Python - by Benjamin Bengfort & Rebecca Bilbro & Tony Ojeda (Paperback)

Applied Text Analysis with Python - by  Benjamin Bengfort & Rebecca Bilbro & Tony Ojeda (Paperback) - 1 of 1
$65.99 when purchased online
Target Online store #3991

About this item

Highlights

  • From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data.
  • About the Author: Benjamin Bengfort is a Data Scientist who lives inside the beltway but ignores politics (the normal business of DC) favoring technology instead.
  • 330 Pages
  • Computers + Internet, Databases

Description



Book Synopsis



From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning.

You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems.

  • Preprocess and vectorize text into high-dimensional feature representations
  • Perform document classification and topic modeling
  • Steer the model selection process with visual diagnostics
  • Extract key phrases, named entities, and graph structures to reason about data in text
  • Build a dialog framework to enable chatbots and language-driven interaction
  • Use Spark to scale processing power and neural networks to scale model complexity



About the Author



Benjamin Bengfort is a Data Scientist who lives inside the beltway but ignores politics (the normal business of DC) favoring technology instead. He is currently working to finish his PhD at the University of Maryland where he studies machine learning and distributed computing. His lab does have robots (though this field of study is not one he favors) and, much to his chagrin, they seem to constantly arm said robots with knives and tools; presumably to pursue culinary accolades. Having seen a robot attempt to slice a tomato, Benjamin prefers his own adventures in the kitchen where he specializes in fusion French and Guyanese cuisine as well as BBQ of all types. A professional programmer by trade, a Data Scientist by vocation, Benjamin's writing pursues a diverse range of subjects from Natural Language Processing, to Data Science with Python to analytics with Hadoop and Spark.

Dr. Rebecca Bilbro is a data scientist, Python programmer, and author in Washington, DC. She specializes in data visualization for machine learning, from feature analysis to model selection and hyperparameter tuning. She is an active contributor to the open source community and has conducted research on natural language processing, semantic network extraction, entity resolution, and high dimensional information visualization. She earned her doctorate from the University of Illinois, Urbana-Champaign, where her research centered on communication and visualization practices in engineering.

Tony is the founder of District Data Labs and focuses on applied analytics for business strategy. He has published a book on practical data science, and has experience with hands-on education and data science curricula.

Dimensions (Overall): 9.0 Inches (H) x 7.0 Inches (W) x .6 Inches (D)
Weight: 1.2 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Databases
Genre: Computers + Internet
Number of Pages: 330
Publisher: O'Reilly Media
Theme: Data Mining
Format: Paperback
Author: Benjamin Bengfort & Rebecca Bilbro & Tony Ojeda
Language: English
Street Date: July 31, 2018
TCIN: 1003037205
UPC: 9781491963043
Item Number (DPCI): 247-29-2572
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.6 inches length x 7 inches width x 9 inches height
Estimated ship weight: 1.2 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy