EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Beginning Anomaly Detection Using Python-Based Deep Learning - 2nd Edition by Suman Kalyan Adari & Sridhar Alla (Paperback)

Beginning Anomaly Detection Using Python-Based Deep Learning - 2nd Edition by  Suman Kalyan Adari & Sridhar Alla (Paperback) - 1 of 1
$42.55 sale price when purchased online
$54.99 list price
Target Online store #3991

About this item

Highlights

  • This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques.
  • About the Author: Suman Kalyan Adari is a machine learning research engineer.
  • 529 Pages
  • Computers + Internet, Intelligence (AI) & Semantics

Description



Book Synopsis



This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.

Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection.

After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.

What You Will Learn

  • Understand what anomaly detection is, why it it is important, and how it is applied
  • Grasp the core concepts of machine learning.
  • Master traditional machine learning approaches to anomaly detection using scikit-kearn.
  • Understand deep learning in Python using Keras and PyTorch
  • Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall
  • Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications

Who This Book Is For

Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.



From the Back Cover



This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning.

Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection.

After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors.

You will:

  • Understand what anomaly detection is, why it it is important, and how it is applied
  • Grasp the core concepts of machine learning.
  • Master traditional machine learning approaches to anomaly detection using scikit-kearn.
  • Understand deep learning in Python using Keras and PyTorch
  • Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall
  • Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications



About the Author



Suman Kalyan Adari is a machine learning research engineer. He obtained a B.S. in Computer Science at the University of Florida and a M.S. in Computer Science specializing in Machine Learning at Columbia University. He has been conducting deep learning research in adversarial machine learning since his freshman year at the University of Florida and presented at the IEEE Dependable Systems and Networks workshop on Dependable and Secure Machine Learning held in Portland, Oregon in June 2019. Currently, he works on various anomaly detection tasks spanning behavioral tracking and geospatial trajectory modeling.

He is passionate about deep learning, and specializes in various fields ranging from video processing, generative modeling, object tracking, time-series modeling, and more.

Sridhar Alla is the co-founder and CTO of Bluewhale, which helps organizations big and small in building AI-driven big data solutions and analytics, as well as SAS2PY, a powerful tool to automate migration of SAS workloads to Python-based environments using Pandas or PySpark. He is a published author and an avid presenter at numerous conferences, including Strata, Hadoop World, and Spark Summit. He also has several patents filed with the US PTO on large-scale computing and distributed systems. He has extensive hands-on experience in several technologies, including Spark, Flink, Hadoop, AWS, Azure, Tensorflow, Cassandra, and others. He spoke on Anomaly Detection Using Deep Learning at Strata SFO in March 2019 and also presented at Strata London in October 2019. He was born in Hyderabad, India and now lives in New Jersey, USA with his wife Rosie, his daughters Evelyn andMadelyn, and his son, Jayson. When he is not busy writing code, he loves to spend time with his family. He also enjoys training, coaching, and organizing meetups.
Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x 1.11 Inches (D)
Weight: 2.07 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 529
Genre: Computers + Internet
Sub-Genre: Intelligence (AI) & Semantics
Publisher: Apress
Format: Paperback
Author: Suman Kalyan Adari & Sridhar Alla
Language: English
Street Date: January 2, 2024
TCIN: 90806681
UPC: 9798868800078
Item Number (DPCI): 247-39-0843
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1.11 inches length x 7 inches width x 10 inches height
Estimated ship weight: 2.07 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy