EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Building Recommender Systems Using Large Language Models - by Wang (Paperback)

Building Recommender Systems Using Large Language Models - by  Wang (Paperback) - 1 of 1
$54.99 when purchased online
Target Online store #3991

About this item

Highlights

  • This book offers a comprehensive exploration of the intersection between Large Language Models (LLMs) and recommendation systems, serving as a practical guide for practitioners, researchers, and students in AI, natural language processing, and data science.
  • About the Author: Jianqiang (Jay) Wang is an AI and data science leader with over 16 years of experience developing machine learning, search, and recommendation systems across leading tech companies including Microsoft, Snap, Twitter, and Kuaishou.
  • 201 Pages
  • Computers + Internet, Intelligence (AI) & Semantics

Description



Book Synopsis



This book offers a comprehensive exploration of the intersection between Large Language Models (LLMs) and recommendation systems, serving as a practical guide for practitioners, researchers, and students in AI, natural language processing, and data science. It addresses the limitations of traditional recommendation techniques--such as their inability to fully understand nuanced language, reason dynamically over user preferences, or leverage multi-modal data--and demonstrates how LLMs can revolutionize personalized recommendations. By consolidating fragmented research and providing structured, hands-on tutorials, the book bridges the gap between cutting-edge research and real-world application, empowering readers to design and deploy next-generation recommender systems.

Structured for progressive learning, the book covers foundational LLM concepts, the evolution from classic to LLM-powered recommendation systems, and advanced topics including end-to-end LLM recommenders, conversational agents, and multi-modal integration. Each chapter blends theoretical insights with practical coding exercises and real-world case studies, such as fashion recommendation and generative content creation. The final chapters discuss emerging challenges, including privacy, fairness, and future trends, offering a forward-looking roadmap for research and application. Readers with a basic understanding of machine learning and NLP will find this resource both accessible and invaluable for building effective, modern recommendation systems enhanced by LLMs.



From the Back Cover



This book offers a comprehensive exploration of the intersection between Large Language Models (LLMs) and recommendation systems, serving as a practical guide for practitioners, researchers, and students in AI, natural language processing, and data science. It addresses the limitations of traditional recommendation techniques--such as their inability to fully understand nuanced language, reason dynamically over user preferences, or leverage multi-modal data--and demonstrates how LLMs can revolutionize personalized recommendations. By consolidating fragmented research and providing structured, hands-on tutorials, the book bridges the gap between cutting-edge research and real-world application, empowering readers to design and deploy next-generation recommender systems.

Structured for progressive learning, the book covers foundational LLM concepts, the evolution from classic to LLM-powered recommendation systems, and advanced topics including end-to-end LLM recommenders, conversational agents, and multi-modal integration. Each chapter blends theoretical insights with practical coding exercises and real-world case studies, such as fashion recommendation and generative content creation. The final chapters discuss emerging challenges, including privacy, fairness, and future trends, offering a forward-looking roadmap for research and application. Readers with a basic understanding of machine learning and NLP will find this resource both accessible and invaluable for building effective, modern recommendation systems enhanced by LLMs.



About the Author



Jianqiang (Jay) Wang is an AI and data science leader with over 16 years of experience developing machine learning, search, and recommendation systems across leading tech companies including Microsoft, Snap, Twitter, and Kuaishou. He has led data science and AI teams and built large-scale systems for content understanding, personalization, and monetization.

Jay is the founder of Curify AI, an AI-powered productivity and content platform, where he focuses on integrating Large Language Models into real-world applications. His current interests span retrieval-augmented generation, multimodal AI, and generative recommendation systems.

He holds a Ph.D. in Statistics and brings a blend of academic rigor and industrial experience to this hands-on guide for building LLM-enhanced recommendation systems.

Dimensions (Overall): 9.25 Inches (H) x 6.1 Inches (W)
Suggested Age: 22 Years and Up
Number of Pages: 201
Genre: Computers + Internet
Sub-Genre: Intelligence (AI) & Semantics
Publisher: Springer
Format: Paperback
Author: Wang
Language: English
Street Date: October 9, 2025
TCIN: 1005347525
UPC: 9783032011510
Item Number (DPCI): 247-08-4498
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1 inches length x 6.1 inches width x 9.25 inches height
Estimated ship weight: 1 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy