Sponsored
Classical Theory of Algebraic Numbers - (Universitext) 2nd Edition by Paulo Ribenboim (Paperback)
About this item
Highlights
- After a brief introduction reviewing the concepts of principal ideal domains and commutative fields, the book discusses residue classes (for example, the integers mog=dulo some number m); quadratic residues; algebraic integers (that is, objects that behave like integers in arbitrary algebraic structures), their discriminant; decomposition, norm, and classes of ideals; the ramification index; and the fundamental theorem of Abelian extensions.
- Author(s): Paulo Ribenboim
- 682 Pages
- Mathematics, Number Theory
- Series Name: Universitext
Description
Book Synopsis
After a brief introduction reviewing the concepts of principal ideal domains and commutative fields, the book discusses residue classes (for example, the integers mog=dulo some number m); quadratic residues; algebraic integers (that is, objects that behave like integers in arbitrary algebraic structures), their discriminant; decomposition, norm, and classes of ideals; the ramification index; and the fundamental theorem of Abelian extensions. The theorems and definitions are carefully motivated, and the author frequently stops to explain how things fit together and what will come next. There are a great many exercises and many useful examples at aReview Quotes
From the reviews of the second edition:
"This book is a thorough self-contained introduction to algebraic number theory. ... The book is aimed at graduate students. The author made a great effort to make the subject easier to understand. The proofs are very detailed, there are plenty of examples and there are exercises at the end of almost all chapters ... . The book contains a great amount of material, more than enough for a year-long course." (Gábor Megyesi, Acta Scientiarum Mathematicarum, Vol. 69, 2003)
"There is a wealth of material in this book. The approach is very classical and global. ... the author keeps his presentation self-contained. The author has made a real effort to make the book accessible to students. Proofs are given in great detail, and there are many examples and exercises. The book would serve well as a text for a graduate course in classical algebraic number theory." (Lawrence Washington, Mathematical Reviews, Issue 2002 e)
"Ribenboims's 'Classical Theory of Algebraic Numbers' is an introduction to algebraic number theory on an elementary level ... . Ribenboim's book is a well written introduction to classical algebraic number theory ... and the perfect textbook for students who need lots of examples." (Franz Lemmermeyer, Zentralblatt MATH, Vol. 1082, 2006)