EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Computer Vision with Maker Tech - by Fabio Manganiello (Paperback)

Computer Vision with Maker Tech - by  Fabio Manganiello (Paperback) - 1 of 1
$56.99 sale price when purchased online
$64.99 list price
Target Online store #3991

About this item

Highlights

  • Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data.
  • About the Author: Fabio Manganiello is a 15 year veteran in machine learning and dynamic programming techniques.
  • 234 Pages
  • Computers + Internet, Hardware

Description



Book Synopsis



Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.

You'll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You'll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.

With those concepts covered, you'll dive into the tools for setting up a network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc. Finally, you'll put things together and work through a couple of practical examples. You'll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you'll add a voice assistant that uses your own model to recognize your voice.

What You'll Learn

  • Develop a voice assistant to control your IoT devices
  • Implement Computer Vision to detect changes in an environment
  • Go beyond simple projects to also gain a grounding machine learning in general
  • See how IoT can become "smarter" with the inception of machine learning techniques
  • Build machine learning models using TensorFlow and OpenCV

Who This Book Is For
Makers and amateur programmers interested in taking simple IoT projects to the next level using TensorFlow and machine learning. Also more advanced programmers wanting an easy on ramp to machine learning concepts.



From the Back Cover



Harness the untapped potential of combining a decentralized Internet of Things (IoT) with the ability to make predictions on real-world fuzzy data. This book covers the theory behind machine learning models and shows you how to program and assemble a voice-controlled security.

You'll learn the differences between supervised and unsupervised learning and how the nuts-and-bolts of a neural network actually work. You'll also learn to identify and measure the metrics that tell how well your classifier is doing. An overview of other types of machine learning techniques, such as genetic algorithms, reinforcement learning, support vector machines, and anomaly detectors will get you up and running with a familiarity of basic machine learning concepts. Chapters focus on the best practices to build models that can actually scale and are flexible enough to be embedded in multiple applications and easily reusable.

With those concepts covered, you'll dive into the tools for setting upa network to collect and process the data points to be fed to our models by using some of the ubiquitous and cheap pieces of hardware that make up today's home automation and IoT industry, such as the RaspberryPi, Arduino, ESP8266, etc. Finally, you'll put things together and work through a couple of practical examples. You'll deploy models for detecting the presence of people in your house, and anomaly detectors that inform you if some sensors have measured something unusual. And you'll add a voice assistant that uses your own model to recognize your voice.

You will:

  • Develop a voice assistant to control your IoT devices
  • Implement Computer Vision to detect changes in an environment
  • Go beyond simple projects to also gain a grounding machine learning in general
  • See how IoT can become "smarter" with the inception of machine learning techniques
  • Build machine learning models using TensorFlow and OpenCV



About the Author



Fabio Manganiello is a 15 year veteran in machine learning and dynamic programming techniques. In his career, he has worked on natural language processing with a focus on automatically labelling and generating definitions for unknown terms in big corpora of unstructured documents; on an early voice assistant (Voxifera) developed back in 2008; on machine learning techniques for clustering, inferring correlations, and preventing the next step in complex attacks by analysing the alerts of an intrusion detection system; and several libraries to make model design and training easier. In the recent years, he has combined his passion for machine learning with IoT and distributed systems. From self-driving robots, to people detection, to anomaly detection, to data forecasting, he likes to combine the flexibility and affordability of tools such as RaspberryPi, Arduino, ESP8266, MQTT, and cheap sensors with the power of machine learning models. He's an active IEEE member and open sourceenthusiast, and has contributed to hundreds of open source projects over the years.
Dimensions (Overall): 9.21 Inches (H) x 6.14 Inches (W) x .53 Inches (D)
Weight: .78 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Hardware
Genre: Computers + Internet
Number of Pages: 234
Publisher: Apress
Theme: General
Format: Paperback
Author: Fabio Manganiello
Language: English
Street Date: February 11, 2021
TCIN: 1003042521
UPC: 9781484268209
Item Number (DPCI): 247-49-0719
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.53 inches length x 6.14 inches width x 9.21 inches height
Estimated ship weight: 0.78 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy