Sponsored
Developmental Regulation of Plant Gene Expression - (Hardcover)
$99.00
In Stock
Eligible for registries and wish lists
Sponsored
About this item
Highlights
- 1 Photoregulation of plant gene expression.
- 244 Pages
- Science, General
Description
Book Synopsis
1 Photoregulation of plant gene expression.- 1.1 Introduction.- 1.2 Photoregulatory responses and levels of control.- 1.2.1 Genes respond differentially to light.- 1.2.2 Transcription is the primary, but not the only, level at which gene expression is controlled by light.- 1.3 Photoreceptors.- 1.3.1 Phytochrome mediates responses in dark-grown plants.- 1.3.2 Developing plastids produce a factor that is required for maximal expression of genes encoding chloroplast proteins.- 1.3.3 In mature leaf tissue phytochrome acts in conjunction with a UV-blue photoreceptor.- 1.3.4 A UV-B photoreceptor interacts with other photoreceptors to control chalcone synthase gene expression.- 1.3.5 Expression of several photoregulated genes exhibits a circadian rhythm.- 1.3.6 The phytochrome genes are subject to autoregulation.- 1.3.7 Overexpression of phytochrome genes in transgenic plants causes morphogenetic effects.- 1.4 DNA sequence elements responsible for photoregulation.- 1.4.1 RbcS genes.- 1.4.2 Cab genes.- 1.4.3 Phytochrome genes.- 1.4.4 The ferredoxin gene.- 1.4.5 Chalcone synthase genes.- 1.5 Concluding remarks.- References.- 2 Hormonal regulation of plant gene expression.- 2.1 Introduction.- 2.2. Auxin: rapid effects on anonymous genes.- 2.2.1 Relating auxin-regulated gene expression to auxin growth responses.- 2.3 Gibberellin: coordinate and non-coordinate regulation of gene expression.- 2.3.1 Approaching the molecular mechanisms of GA regulation.- 2.3.2 The acquisition of GA sensitivity.- 2.4 Abscisic acid: stress and development.- 2.5 Cytokinin and ethylene.- 2.5.1 Control of gene expression by cytokinin.- 2.5.2 Control of gene expression by ethylene.- 2.6 Conclusion.- References.- 3 Gene activity during tuber formation in the potato (Solanum tuberosum).- 3.1 Introduction.- 3.2 Development and anatomy of the tuber.- 3.3 Biochemical differentiation during tuber formation.- 3.3.1 The enzymes of starch metabolism.- 3.3.2 The regulation and function of patatin genes.- 3.3.3 The activity of other genes in potato tubers.- 3.4 Future prospects and application of genetic engineering to tubers.- References.- 4 Control of flavonoid synthesis and manipulation of flower colour.- 4.1 Introduction.- 4.2 Flavonoid biosynthesis.- 4.2.1 Flavonoids: structure and function.- 4.2.2 Flavonoids: biosynthesis route.- 4.3 Flavonoids as flower pigments.- 4.3.1 Anthocyanins.- 4.3.2 Yellow and colourless flavonoids.- 4.4 Genetic engineering of flower colour.- 4.4.1 Classical breeding.- 4.4.2 Molecular flower breeding.- References.- 5 The molecular basis for sexual incompatibility.- 5.1 Introduction.- 5.2 Angiosperm incompatibility systems.- 5.2.1 Cellular aspects of pollen-pistil interactions.- 5.2.2 Genetics of the one-locus incompatibilities.- 5.3 Molecular analysis of SI in Brassica.- 5.3.1 SLSG and its involvement in SI.- 5.3.2 Expression of SLSG in the stigma.- 5.3.3 Expression in anthers.- 5.3.4 The structure of SLSG.- 5.3.5 The S-multigene family.- 5.3.6 Comparison of the SLSG-structural gene and an S-locus related gene.- 5.3.7 S-sequences are conserved in the crucifer family.- 5.3.8 Gene interactions and the inheritance of self-compatibility.- 5.3.9 Evolution.- 5.3.10 Applications in breeding.- 5.4 Summary and prospects.- References.- 6 Control of gene expression in the developing seed.- 6.1 Introduction.- 6.2 Phases of seed development.- 6.3 Primary structure and flanking regions of some seed protein genes.- 6.3.1 2S-type genes.- 6.3.2 7S-type genes.- 6.3.3 11S-type genes.- 6.3.4 Cereal genes.- 6.4 Transcriptional control of seed storage protein genes is the major regulatory process.- 6.5 The role of post-transcriptional events in storage protein gene expression.- 6.6 Genetic lesions affecting seed protein expression.- 6.7 Role of hormones in seed protein gene expression.- 6.8 Proposed regulatory sequence elements in seed protein genes.- 6.9 Expression of seed protein genes in transgenic plants.- 6.9.1 7S vicilin-like genes.- 6.9.2 11S legumin-lik...Dimensions (Overall): 9.0 Inches (H) x 6.0 Inches (W) x .56 Inches (D)
Weight: 1.09 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 244
Genre: Science
Sub-Genre: General
Publisher: Springer
Format: Hardcover
Language: English
Street Date: January 1, 1991
TCIN: 1006602047
UPC: 9780216929333
Item Number (DPCI): 247-17-1378
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.
Shipping details
Estimated ship dimensions: 0.56 inches length x 6 inches width x 9 inches height
Estimated ship weight: 1.09 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO
Return details
This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.