Sponsored
Dualisability - (Advances in Mathematics) by Jane G Pitkethly & Brian A Davey (Hardcover)
In Stock
Sponsored
About this item
Highlights
- Natural duality theory is one of the major growth areas within general algebra.
- Author(s): Jane G Pitkethly & Brian A Davey
- 264 Pages
- Mathematics, Logic
- Series Name: Advances in Mathematics
Description
Book Synopsis
Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems.
Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples.
A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability.
From the Back Cover
Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems.
Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples.
A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability.
Audience
This book is intended for established researchers in natural duality theory, general algebraists wishing to commence research in duality theory, and graduate students in algebra.
Review Quotes
From the reviews of the first edition:
"This fascinating book shows that even in the realm of unary algebras, where one might expect the situation to be virtually trivial almost all pathological behaviour occurs already. ... The list of references is thorough and the index excellent." (Sheila Oates-Williams, Zentralblatt MATH, Vol. 1085, 2006)