EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Industrial Machine Learning - by Andreas François Vermeulen (Paperback)

Industrial Machine Learning - by  Andreas François Vermeulen (Paperback) - 1 of 1
$43.99 sale price when purchased online
$79.99 list price
Target Online store #3991

About this item

Highlights

  • Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI).
  • About the Author: Andreas François Vermeulen is Chief Data Scientist and Solutions Delivery Manager at Sopra-Steria and he serves as part-time doctoral researcher and senior research project advisor at University of St. Andrews on future concepts in health care systems, Internet of Things (IoT) sensors, massive distributed computing, mechatronics, at-scale data lake technology, data science, business intelligence (BI), and deep machine learning in health informatics.
  • 637 Pages
  • Computers + Internet, Intelligence (AI) & Semantics

Description



Book Synopsis



Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science.

Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes.

Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors.


What You Will Learn

  • Generate and identify transformational disruptors of artificial intelligence (AI)
  • Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment
  • Hone the skills required to handle the future of data engineering and data science


Who This Book Is For

Intermediate to expert level professionals in the fields of data science, data engineering, machine learning, and data management




From the Back Cover



Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science.

Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes.

Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3Dprinting, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors.

You will:

  • Generate and identify transformational disruptors of artificial intelligence (AI)
  • Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment
  • Hone the skills required to handle the future of data engineering and data science




About the Author



Andreas François Vermeulen is Chief Data Scientist and Solutions Delivery Manager at Sopra-Steria and he serves as part-time doctoral researcher and senior research project advisor at University of St. Andrews on future concepts in health care systems, Internet of Things (IoT) sensors, massive distributed computing, mechatronics, at-scale data lake technology, data science, business intelligence (BI), and deep machine learning in health informatics.

Andre maintains and incubates the Rapid Information Factory data processing framework. He is active in developing next-generation data processing frameworks and mechatronics engineering with over 36 years of global experience in complex data processing, software development, and system architecture. He is an expert data scientist, doctoral trainer, corporate consultant, and speaker/author/columnist on data science, business intelligence, machine learning, decision science, data engineering, distributed computing, and at-scale data lakes. He has expert-level industrial experience in various areas (finance, telecommunication, manufacturing, government service, public safety and health informatics).

Andre received his bachelor's degree from North West University at Potchefstroom, his Master of Business Administration (MBA) at University of Manchester, his Master of Business Intelligence and Data Science degree at University of Dundee, and his Doctor of Philosophy at University of St. Andrews.

Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x 1.33 Inches (D)
Weight: 2.5 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Intelligence (AI) & Semantics
Genre: Computers + Internet
Number of Pages: 637
Publisher: Apress
Format: Paperback
Author: Andreas François Vermeulen
Language: English
Street Date: December 1, 2019
TCIN: 1003040627
UPC: 9781484253151
Item Number (DPCI): 247-48-0360
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1.33 inches length x 7 inches width x 10 inches height
Estimated ship weight: 2.5 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy