$53.99 sale price when purchased online
$59.99 list price
Target Online store #3991
About this item
Highlights
- Use artificial intelligence (AI) techniques to build tools for auditing your organization.
- About the Author: Maris Sekar is a professional computer engineer, Certified Information Systems Auditor (ISACA), and Senior Data Scientist (Data Science Council of America).
- 242 Pages
- Computers + Internet, Information Theory
Description
Book Synopsis
Use artificial intelligence (AI) techniques to build tools for auditing your organization. This is a practical book with implementation recipes that demystify AI, ML, and data science and their roles as applied to auditing. You will learn about data analysis techniques that will help you gain insights into your data and become a better data storyteller. The guidance in this book around applying artificial intelligence in support of audit investigations helps you gain credibility and trust with your internal and external clients. A systematic process to verify your findings is also discussed to ensure the accuracy of your findings.Machine Learning for Auditors provides an emphasis on domain knowledge over complex data science know how that enables you to think like a data scientist. The book helps you achieve the objectives of safeguarding the confidentiality, integrity, and availability of your organizational assets. Data science does not need to be an intimidating concept for audit managers and directors. With the knowledge in this book, you can leverage simple concepts that are beyond mere buzz words to practice innovation in your team. You can build your credibility and trust with your internal and external clients by understanding the data that drives your organization. What You Will Learn
- Understand the role of auditors as trusted advisors
- Perform exploratory data analysis to gain a deeper understanding of your organization
- Build machine learning predictive models that detect fraudulent vendor payments and expenses
- Integrate data analytics with existing and new technologies
- Leverage storytelling to communicate and validate your findings effectively
- Apply practical implementation use cases within your organization
AI Auditing is for internal auditors who are looking to use data analytics and data science to better understand their organizational data. It is for auditors interested in implementing predictive and prescriptive analytics in support of better decision making and risk-based testing of your organizational processes.
From the Back Cover
Use artificial intelligence (AI) techniques to build tools for auditing your organization. This is a practical book with implementation recipes that demystify AI, ML, and data science and their roles as applied to auditing. You will learn about data analysis techniques that will help you gain insights into your data and become a better data storyteller. The guidance in this book around applying artificial intelligence in support of audit investigations helps you gain credibility and trust with your internal and external clients. A systematic process to verify your findings is also discussed to ensure the accuracy of your findings.Machine Learning for Auditors provides an emphasis on domain knowledge over complex data science know how that enables you to think like a data scientist. The book helps you achieve the objectives of safeguarding the confidentiality, integrity, and availability of your organizational assets. Data science does not need to be an intimidatingconcept for audit managers and directors. With the knowledge in this book, you can leverage simple concepts that are beyond mere buzz words to practice innovation in your team. You can build your credibility and trust with your internal and external clients by understanding the data that drives your organization.
What You Will Learn
- Understand the role of auditors as trusted advisors
- Perform exploratory data analysis to gain a deeper understanding of your organization
- Build machine learning predictive models that detect fraudulent vendor payments and expenses
- Integrate data analytics with existing and new technologies
- Leverage storytelling to communicate and validate your findings effectively
- Apply practical implementation use cases within your organization
About the Author
Maris Sekar is a professional computer engineer, Certified Information Systems Auditor (ISACA), and Senior Data Scientist (Data Science Council of America). He has a passion for using storytelling to communicate on high-risk items within an organization to enable better decision making and drive operational efficiencies. He has cross-functional work experience in various domains such as risk management, data analysis and strategy, and has functioned as a subject matter expert in organizations such as PricewaterhouseCoopers LLP, Shell Canada Ltd., and TC Energy. Maris' love for data has motivated him to win awards, write LinkedIn articles, and publish two papers with IEEE on applied machine learning and data science.Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x .55 Inches (D)
Weight: 1.01 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Information Theory
Genre: Computers + Internet
Number of Pages: 242
Publisher: Apress
Format: Paperback
Author: Maris Sekar
Language: English
Street Date: February 27, 2022
TCIN: 1003043701
UPC: 9781484280508
Item Number (DPCI): 247-49-5264
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.
Shipping details
Estimated ship dimensions: 0.55 inches length x 7 inches width x 10 inches height
Estimated ship weight: 1.01 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO
Return details
This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.