EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Math for Deep Learning - by Ronald T Kneusel (Paperback)

Math for Deep Learning - by  Ronald T Kneusel (Paperback) - 1 of 1
$28.99 sale price when purchased online
$49.99 list price
Target Online store #3991

About this item

Highlights

  • Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.
  • About the Author: Ronald T. Kneusel earned a PhD in machine learning from the University of Colorado, Boulder.
  • 344 Pages
  • Computers + Internet,

Description



About the Book



To truly understand the power of deel learning, you need to grasp the mathematical concepts that make it tick. "Math for deep learning" will give you a working knowledge of probability, statistics, linear algebra, and differential calculus-- the essential math subfields required to practice deep learning successfully. Each subfield is explained with Python code and hands-on, real-world examples that bridge the gap between pure mathematics and its applications in deep learning. The book begins with fundamentals such as Bayes' theorem before progressing to more advanced concepts like training neural networks using vectors, matrices, and derivatives of functions. You'll then put all this math to use as you explore and implement backpropagation and gradient descent-- the foundational algorithms that have enabled the AI revolution.



Book Synopsis



Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits.

With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning.

You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network.

In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.



Review Quotes




"An excellent resource for anyone looking to gain a solid foundation in the mathematics underlying deep learning algorithms. The book is accessible, well-organized, and provides clear explanations and practical examples of key mathematical concepts. I highly recommend it to anyone interested in this field."
--Daniel Gutierrez, insideBIGDATA

"Ronald T. Kneusel has written a handy and compact guide to the mathematics of deep learning. It will be a well-worn reference for equations and algorithms for the student, scientist, and practitioner of neural networks and machine learning. Complete with equations, figures and even sample code in Python, this book is a wonderful mathematical introduction for the reader."
--David S. Mazel, Senior Engineer, Regulus-Group

"What makes Math for Deep Learning a stand-out, is that it focuses on providing a sufficient mathematical foundation for deep learning, rather than attempting to cover all of deep learning, and introduce the needed math along the way. Those eager to master deep learning are sure to benefit from this foundation-before-house approach."
--Ed Scott, Ph.D., Solutions Architect & IT Enthusiast



About the Author



Ronald T. Kneusel earned a PhD in machine learning from the University of Colorado, Boulder. He has over 20 years of machine learning industry experience. Kneusel is also the author of Numbers and Computers (2nd ed., Springer 2017), Random Numbers and Computers (Springer 2018), and Practical Deep Learning: A Python-Based Introduction (No Starch Press 2021).
Dimensions (Overall): 9.1 Inches (H) x 7.0 Inches (W) x .9 Inches (D)
Weight: 1.4 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 344
Genre: Computers + Internet
Publisher: No Starch Press
Format: Paperback
Author: Ronald T Kneusel
Language: English
Street Date: December 7, 2021
TCIN: 1004093838
UPC: 9781718501904
Item Number (DPCI): 247-18-6882
Origin: Made in the USA or Imported

Shipping details

Estimated ship dimensions: 0.9 inches length x 7 inches width x 9.1 inches height
Estimated ship weight: 1.4 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy