EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

New Methods in Financial Modeling - by Hugh Neuburger & Houston Stokes (Hardcover)

New Methods in Financial Modeling - by  Hugh Neuburger & Houston Stokes (Hardcover) - 1 of 1
$75.00 when purchased online
Target Online store #3991

About this item

Highlights

  • The authors present a number of financial market studies that have as their general theme, the econometric testing of the underlying econometric assumptions of a number of financial models.
  • About the Author: HOUSTON H. STOKES is Professor of Economics at the University of Illinois at Chicago.
  • 168 Pages
  • Business + Money Management, Economics

Description



About the Book




The authors present a number of financial market studies that have as their general theme, the econometric testing of the underlying econometric assumptions of a number of financial models. More than 30 years of financial market research has convinced the authors that not enough attention has been paid to whether the estimated model is appropriate or, most importantly, whether the estimation technique is suitable for the problem under study. For many years linear models have been assumed with little or no testing of alternative specification. The result has been models that force linearity assumptions on what clearly are nonlinear processes. Another major assumption of much financial research constrains the coefficients to be stable over time. This critical assumption has been attacked by Lucas (1976) on the grounds that when economic policy changes, the coefficients of macroeconomics models change. If this occurs, any policy forecasts of these models will be flawed. In financial modeling, omitted (possibly non-quantifiable) variables will bias coefficients. While it may be possible to model some financial variables for extended periods, in other periods the underlying models may either exhibit nonlinearity or show changes in linear models. The authors research indicates that tests for changes in linear models, such as recursive residual analysis, or tests for episodic nonlinearity can be used to signal changes in the underlying structure of the market.

The book begins with a brief review of basic linear time series techniques that include autoregressive integrated moving average models (ARIMA), vector autoregressive models (VAR), and models form the ARCH/GARCH class. While the ARIMA and VAR approach models the first moment of a series, models of the ARCH/GARCH class model both the first moment and second moment which is interpreted as conditional or explained volatility of a series. Recent work on nonlinearity detection has questioned the appropriateness of these essentially linear approaches. A number of such tests are shown and applied for the complete series and a subsets of the series. A major finding is that the structure of the series may change over time. Within the time frame of a study, there may be periods of episodic nonlinearity, episodic ARCH and episodic nonstationarity. Measures are developed to measure and relate these events both geographically and with mathematical models. This book will be of interest to applied finance researchers and to market participants.



Book Synopsis



The authors present a number of financial market studies that have as their general theme, the econometric testing of the underlying econometric assumptions of a number of financial models. More than 30 years of financial market research has convinced the authors that not enough attention has been paid to whether the estimated model is appropriate or, most importantly, whether the estimation technique is suitable for the problem under study. For many years linear models have been assumed with little or no testing of alternative specification. The result has been models that force linearity assumptions on what clearly are nonlinear processes. Another major assumption of much financial research constrains the coefficients to be stable over time. This critical assumption has been attacked by Lucas (1976) on the grounds that when economic policy changes, the coefficients of macroeconomics models change. If this occurs, any policy forecasts of these models will be flawed. In financial modeling, omitted (possibly non-quantifiable) variables will bias coefficients. While it may be possible to model some financial variables for extended periods, in other periods the underlying models may either exhibit nonlinearity or show changes in linear models. The authors research indicates that tests for changes in linear models, such as recursive residual analysis, or tests for episodic nonlinearity can be used to signal changes in the underlying structure of the market.

The book begins with a brief review of basic linear time series techniques that include autoregressive integrated moving average models (ARIMA), vector autoregressive models (VAR), and models form the ARCH/GARCH class. While the ARIMA and VAR approach models the first moment of a series, models of the ARCH/GARCH class model both the first moment and second moment which is interpreted as conditional or explained volatility of a series. Recent work on nonlinearity detection has questioned the appropriateness of these essentially linear approaches. A number of such tests are shown and applied for the complete series and a subsets of the series. A major finding is that the structure of the series may change over time. Within the time frame of a study, there may be periods of episodic nonlinearity, episodic ARCH and episodic nonstationarity. Measures are developed to measure and relate these events both geographically and with mathematical models. This book will be of interest to applied finance researchers and to market participants.



About the Author



HOUSTON H. STOKES is Professor of Economics at the University of Illinois at Chicago. The author of more than 75 articles and four books, he has consulted widely in finance, health economics, and energy economics. His main research in recent years involves the development and application of diagnostic procedures for the specification of econometric models, which is the topic of his 1991 Quorum book, Specifying and Testing Econometric Models (Second Edition, 1997).

HUGH M. NEUBURGER is Senior Vice President and Director of Growth Equities at DLJ Investment Management Corp., Donaldson, Lufkin & Jenrette, New York. He has taught at the Columbia University Graduate School of Business, and has published more than 20 articles. He was also Managing Director and Cofounder of Matrix Capital Management and a Director in the Pension Asset Management Group of the Prudential Insurance Company.

Dimensions (Overall): 9.59 Inches (H) x 6.36 Inches (W) x .78 Inches (D)
Weight: .91 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 168
Genre: Business + Money Management
Sub-Genre: Economics
Publisher: Praeger
Theme: Theory
Format: Hardcover
Author: Hugh Neuburger & Houston Stokes
Language: English
Street Date: February 18, 1998
TCIN: 1005058687
UPC: 9781567201253
Item Number (DPCI): 247-28-8124
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.78 inches length x 6.36 inches width x 9.59 inches height
Estimated ship weight: 0.91 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy