Sponsored
Ordinary Differential Equations - (Universitext) 3rd Edition by Vladimir I Arnold (Paperback)
About this item
Highlights
- Arnol'd's ODE book distinguishes itself from the dozens of others by its emphasis on the qualitative and geometric theory rather than the quantitative theory.
- Author(s): Vladimir I Arnold
- 338 Pages
- Mathematics, Differential Equations
- Series Name: Universitext
Description
Book Synopsis
Arnol'd's ODE book distinguishes itself from the dozens of others by its emphasis on the qualitative and geometric theory rather than the quantitative theory. His aim is to analyze and describe the behavior of systems, rather than providing a collection of unexplained tricks for solving specific equations. Thus, there are plenty of examples and figures, but no complicated formulas. Arnol'd is known by mathematicians and students both for his mathematical skills and for his talent for mathematical writing.From the Back Cover
From the reviews: "... This book is an excellent text for a course whose goal is a mathematical treatment of differential equations and the related physical systems." L'Enseignment Mathematique "... Arnold's book is unique as a sophisticated but accessible introduction to the modern theory, and we should be grateful that it exists in a convenient language." Mathematical Association of America MonthlyReview Quotes
"Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation ... . The new edition is highly recommended as a general reference for the essential theory of ordinary differential equations and as a textbook for an introductory course for serious undergraduate or graduate students. ... In the US system, it is an excellent text for an introductory graduate course." (Carmen Chicone, SIAM Review, Vol. 49 (2), 2007)
"Vladimir Arnold's is a master, not just of the technical realm of differential equations but of pedagogy and exposition as well. ... The writing throughout is crisp and clear. ... Arnold's says that the book is based on a year-long sequence of lectures for second-year mathematics majors in Moscow. In the U.S., this material is probably most appropriate for advanced undergraduates or first-year graduate students." (William J. Satzer, MathDL, August, 2007)