EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Real World Health Care Data Analysis - by Douglas Faries & Xiang Zhang & Zbigniew Kadziola (Paperback)

Real World Health Care Data Analysis - by  Douglas Faries & Xiang Zhang & Zbigniew Kadziola (Paperback) - 1 of 1
$84.95 when purchased online
Target Online store #3991

About this item

Highlights

  • Discover best practices for real world data research with SAS code and examples Real world health care data is common and growing in use with sources such as observational studies, patient registries, electronic medical record databases, insurance healthcare claims databases, as well as data from pragmatic trials.
  • About the Author: Douglas Faries graduated from Oklahoma State University with a PhD in Statistics in 1990 and joined Eli Lilly and Company later that year.
  • 436 Pages
  • Computers + Internet, Mathematical & Statistical Software

Description



Book Synopsis



Discover best practices for real world data research with SAS code and examples

Real world health care data is common and growing in use with sources such as observational studies, patient registries, electronic medical record databases, insurance healthcare claims databases, as well as data from pragmatic trials. This data serves as the basis for the growing use of real world evidence in medical decision-making. However, the data itself is not evidence. Analytical methods must be used to turn real world data into valid and meaningful evidence. Real World Health Care Data Analysis: Causal Methods and Implementation Using SAS brings together best practices for causal comparative effectiveness analyses based on real world data in a single location and provides SAS code and examples to make the analyses relatively easy and efficient.

The book focuses on analytic methods adjusted for time-independent confounding, which are useful when comparing the effect of different potential interventions on some outcome of interest when there is no randomization. These methods include:

  • propensity score matching, stratification methods, weighting methods, regression methods, and approaches that combine and average across these methods
  • methods for comparing two interventions as well as comparisons between three or more interventions
  • algorithms for personalized medicine
  • sensitivity analyses for unmeasured confounding



Review Quotes




"This book is packed full of useful and insightful information. The table of contents may seem daunting to novice SAS users / healthcare analysts, but given the topics covered, I would recommend a brief run-through at least for anyone new to the field. For more intermediate / advanced users, this book will become a mainstay in your resource list." -- Chris Battiston, Research Data Analyst "Women's College Hospital"



About the Author



Douglas Faries graduated from Oklahoma State University with a PhD in Statistics in 1990 and joined Eli Lilly and Company later that year. Over the past 17 years, Doug has focused his research interests on statistical methodology for real world data including causal inference, comparative effectiveness, unmeasured confounding, and the use of real world data for personalized medicine. Currently, Doug is a Sr. Research Fellow at Eli Lilly, leading the Real-World Analytics Capabilities team. He has authored or co-authored over 150 peer-reviewed manuscripts including editing the textbook Analysis of Observational Healthcare Data Using SAS in 2010. He is active in the statistical community as a publication reviewer, speaker, workshop organizer, and teaches short courses in causal inference at national meetings. He has been a SAS user since 1988.
Dimensions (Overall): 11.0 Inches (H) x 8.25 Inches (W) x .89 Inches (D)
Weight: 2.15 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 436
Genre: Computers + Internet
Sub-Genre: Mathematical & Statistical Software
Publisher: SAS Institute
Format: Paperback
Author: Douglas Faries & Xiang Zhang & Zbigniew Kadziola
Language: English
Street Date: January 15, 2020
TCIN: 1005682359
UPC: 9781642957983
Item Number (DPCI): 247-43-4409
Origin: Made in the USA or Imported

Shipping details

Estimated ship dimensions: 0.89 inches length x 8.25 inches width x 11 inches height
Estimated ship weight: 2.15 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy