Sponsored
Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly - (Hardcover)
In Stock
Sponsored
About this item
Highlights
- Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly, Volume 170 in the Progress in Molecular Biology and Translational Science series, provides the most topical, informative and exciting monographs available on a wide variety of research topics.
- 552 Pages
- Science, Life Sciences
- Series Name: Progress in Molecular Biology and Translational Science
Description
Book Synopsis
Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly, Volume 170 in the Progress in Molecular Biology and Translational Science series, provides the most topical, informative and exciting monographs available on a wide variety of research topics. The series includes in-depth knowledge on the molecular biological aspects of organismal physiology, with this release including chapters on Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins, Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers, Enhanced sampling and free energy methods, and much more.
Review Quotes
"This book is an excellent resource on computational approaches for understanding protein folding and assembly. Computational researchers, curious experimentalists, students, molecular biologists, and protein chemists will find it quite interesting. There are very few books available that go to such depths to explain computational approaches for understanding dynamical systems such as protein folding and assembly." --Doody