EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Computational Aspects of Modular Forms and Galois Representations - (Annals of Mathematics Studies) by Bas Edixhoven & Jean-Marc Couveignes

Computational Aspects of Modular Forms and Galois Representations - (Annals of Mathematics Studies) by  Bas Edixhoven & Jean-Marc Couveignes - 1 of 1
$104.00 when purchased online
Target Online store #3991

About this item

Highlights

  • Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices.
  • About the Author: Bas Edixhoven is professor of mathematics at the University of Leiden.
  • 440 Pages
  • Mathematics, Geometry
  • Series Name: Annals of Mathematics Studies

Description



About the Book



"Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number P can be computed in time bounded by a fixed power of the logarithm of P. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields.The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations"--



Book Synopsis



Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.

The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields.

The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.



Review Quotes




"The book is well written and provides sufficient detail and reminders about the big picture. It gives a nice exposition of the material involved and should be accessible to graduate students or researchers with a sufficient background in number theory and algebraic geometry."---Jeremy A. Rouse, Mathematical Reviews Clippings



About the Author



Bas Edixhoven is professor of mathematics at the University of Leiden. Jean-Marc Couveignes is professor of mathematics at the University of Toulouse le Mirail. Robin de Jong is assistant professor at the University of Leiden. Franz Merkl is professor of applied mathematics at the University of Munich. Johan Bosman is a postdoctoral researcher at the Institut für Experimentelle Mathematik in Essen, Germany.
Dimensions (Overall): 9.1 Inches (H) x 6.1 Inches (W) x .9 Inches (D)
Weight: 1.35 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 440
Genre: Mathematics
Sub-Genre: Geometry
Series Title: Annals of Mathematics Studies
Publisher: Princeton University Press
Theme: Algebraic
Format: Paperback
Author: Bas Edixhoven & Jean-Marc Couveignes
Language: English
Street Date: June 20, 2011
TCIN: 1005679998
UPC: 9780691142029
Item Number (DPCI): 247-20-7313
Origin: Made in the USA or Imported

Shipping details

Estimated ship dimensions: 0.9 inches length x 6.1 inches width x 9.1 inches height
Estimated ship weight: 1.35 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy