Sponsored
Data Analysis with Python and Pyspark - by Jonathan Rioux (Paperback)
$59.99
In Stock
Eligible for registries and wish lists
Sponsored
About this item
Highlights
- Think big about your data!
- About the Author: As a data scientist for an engineering consultancy Jonathan Rioux uses PySpark daily.
- 456 Pages
- Computers + Internet, Databases
Description
About the Book
When it comes to data analytics, itpays to think big. PySpark blends the powerful Spark big data processing engine with the Python programming language to provide a data analysis platform that can scale up for nearly any task. Data Analysis with Python and PySparkis your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build lightning-fast pipelines for reporting, machine learning, and otherdata-centric tasks. No previous knowledge of Spark is required.Book Synopsis
Think big about your data! PySpark brings the powerful Spark big data processing engine to the Python ecosystem, letting you seamlessly scale up your data tasks and create lightning-fast pipelines. In Data Analysis with Python and PySpark you will learn how to: Manage your data as it scales across multiple machinesScale up your data programs with full confidence
Read and write data to and from a variety of sources and formats
Deal with messy data with PySpark's data manipulation functionality
Discover new data sets and perform exploratory data analysis
Build automated data pipelines that transform, summarize, and get insights from data
Troubleshoot common PySpark errors
Creating reliable long-running jobs Data Analysis with Python and PySpark is your guide to delivering successful Python-driven data projects. Packed with relevant examples and essential techniques, this practical book teaches you to build pipelines for reporting, machine learning, and other data-centric tasks. Quick exercises in every chapter help you practice what you've learned, and rapidly start implementing PySpark into your data systems. No previous knowledge of Spark is required. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology
The Spark data processing engine is an amazing analytics factory: raw data comes in, insight comes out. PySpark wraps Spark's core engine with a Python-based API. It helps simplify Spark's steep learning curve and makes this powerful tool available to anyone working in the Python data ecosystem. About the book
Data Analysis with Python and PySpark helps you solve the daily challenges of data science with PySpark. You'll learn how to scale your processing capabilities across multiple machines while ingesting data from any source--whether that's Hadoop clusters, cloud data storage, or local data files. Once you've covered the fundamentals, you'll explore the full versatility of PySpark by building machine learning pipelines, and blending Python, pandas, and PySpark code. What's inside Organizing your PySpark code
Managing your data, no matter the size
Scale up your data programs with full confidence
Troubleshooting common data pipeline problems
Creating reliable long-running jobs About the reader
Written for data scientists and data engineers comfortable with Python. About the author
As a ML director for a data-driven software company, Jonathan Rioux uses PySpark daily. He teaches the software to data scientists, engineers, and data-savvy business analysts. Table of Contents 1 Introduction
PART 1 GET ACQUAINTED: FIRST STEPS IN PYSPARK
2 Your first data program in PySpark
3 Submitting and scaling your first PySpark program
4 Analyzing tabular data with pyspark.sql
5 Data frame gymnastics: Joining and grouping
PART 2 GET PROFICIENT: TRANSLATE YOUR IDEAS INTO CODE
6 Multidimensional data frames: Using PySpark with JSON data
7 Bilingual PySpark: Blending Python and SQL code
8 Extending PySpark with Python: RDD and UDFs
9 Big data is just a lot of small data: Using pandas UDFs
10 Your data under a different lens: Window functions
11 Faster PySpark: Understanding Spark's query planning
PART 3 GET CONFIDENT: USING MACHINE LEARNING WITH PYSPARK
12 Setting the stage: Preparing features for machine learning
13 Robust machine learning with ML Pipelines
14 Building custom ML transformers and estimators
From the Back Cover
Data Analysis with Python and PySpark is a carefully engineered tutorial that helps you use PySpark to deliver your data-driven applications at any scale.This clear and hands-on guide shows you how to enlarge your processing capabilities across multiple machines with data from any source, ranging from Had oop-based clusters to Excel worksheets. You'll learn how to break down big analysis tasks into manageable chunks and how to choose and use the best PySpark data abstraction for your unique needs. By the time you're done, you'll be able towrite and run incredibly fast PySpark programs that are scalable, efficient tooperate, and easy to debug.Review Quotes
"A great and gentle introduction to spark." Javier Collado Cabeza "A phenomenal introduction to PySpark from the ground up."Anonymous Reviewer "A great book to get you started with PySpark!" Jeremy Loscheider "Takes you on an example focused tour of building pyspark data structures from the data you provide and processing them at speed." Alex Lucas "If you need to learn PySpark (as a Data Scientist or Data Wrangler) start with this book!"Geoff Clark
About the Author
As a data scientist for an engineering consultancy Jonathan Rioux uses PySpark daily. He teaches the software to data scientists, engineers, and data-savvy business analysts.Dimensions (Overall): 9.13 Inches (H) x 7.32 Inches (W) x 1.1 Inches (D)
Weight: 1.67 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 456
Genre: Computers + Internet
Sub-Genre: Databases
Publisher: Manning Publications
Theme: Data Mining
Format: Paperback
Author: Jonathan Rioux
Language: English
Street Date: March 22, 2022
TCIN: 1007038746
UPC: 9781617297205
Item Number (DPCI): 247-21-7266
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.
Shipping details
Estimated ship dimensions: 1.1 inches length x 7.32 inches width x 9.13 inches height
Estimated ship weight: 1.67 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO
Return details
This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.