New ArrivalsChristmasHoliday Hosting & EntertainingGift IdeasAI Gift FinderClothing, Shoes & AccessoriesToysElectronicsBeautyGift CardsHomeFurnitureCharacter ShopBabyKitchen & DiningGroceryHousehold EssentialsSchool & Office SuppliesVideo GamesMovies, Music & BooksSports & OutdoorsBackpacks & LuggagePersonal CareHealthPetsUlta Beauty at TargetTarget OpticalParty SuppliesClearanceTarget New Arrivals Target Finds #TargetStyleHanukkahStore EventsAsian-Owned Brands at TargetBlack-Owned or Founded Brands at TargetLatino-Owned Brands at TargetWomen-Owned Brands at TargetLGBTQIA+ ShopTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores
Introduction to Foundation Models - by  Pin-Yu Chen & Sijia Liu (Hardcover) - 1 of 1

Introduction to Foundation Models - by Pin-Yu Chen & Sijia Liu (Hardcover)

$79.99

In Stock

Eligible for registries and wish lists

Sponsored

About this item

Highlights

  • This book offers an extensive exploration of foundation models, guiding readers through the essential concepts and advanced topics that define this rapidly evolving research area.
  • About the Author: Dr. Pin-Yu Chen is a principal research scientist at IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.
  • 310 Pages
  • Computers + Internet, Intelligence (AI) & Semantics

Description



Book Synopsis



This book offers an extensive exploration of foundation models, guiding readers through the essential concepts and advanced topics that define this rapidly evolving research area. Designed for those seeking to deepen their understanding and contribute to the development of safer and more trustworthy AI technologies, the book is divided into three parts providing the fundamentals, advanced topics in foundation modes, and safety and trust in foundation models:

  • Part I introduces the core principles of foundation models and generative AI, presents the technical background of neural networks, delves into the learning and generalization of transformers, and finishes with the intricacies of transformers and in-context learning.

  • Part II introduces automated visual prompting techniques, prompting LLMs with privacy, memory-efficient fine-tuning methods, and shows how LLMs can be reprogrammed for time-series machine learning tasks. It explores how LLMs can be reused for speech tasks, how synthetic datasets can be used to benchmark foundation models, and elucidates machine unlearning for foundation models.

  • Part III provides a comprehensive evaluation of the trustworthiness of LLMs, introduces jailbreak attacks and defenses for LLMs, presents safety risks when find-tuning LLMs, introduces watermarking techniques for LLMs, presents robust detection of AI-generated text, elucidates backdoor risks in diffusion models, and presents red-teaming methods for diffusion models.

Mathematical notations are clearly defined and explained throughout, making this book an invaluable resource for both newcomers and seasoned researchers in the field.



From the Back Cover



This book offers an extensive exploration of foundation models, guiding readers through the essential concepts and advanced topics that define this rapidly evolving research area. Designed for those seeking to deepen their understanding and contribute to the development of safer and more trustworthy AI technologies, the book is divided into three parts providing the fundamentals, advanced topics in foundation modes, and safety and trust in foundation models:

  • Part I introduces the core principles of foundation models and generative AI, presents the technical background of neural networks, delves into the learning and generalization of transformers, and finishes with the intricacies of transformers and in-context learning.

  • Part II introduces automated visual prompting techniques, prompting LLMs with privacy, memory-efficient fine-tuning methods, and shows how LLMs can be reprogrammed for time-series machine learning tasks. It explores how LLMs can be reused for speech tasks, how synthetic datasets can be used to benchmark foundation models, and elucidates machine unlearning for foundation models.

  • Part III provides a comprehensive evaluation of the trustworthiness of LLMs, introduces jailbreak attacks and defenses for LLMs, presents safety risks when find-tuning LLMs, introduces watermarking techniques for LLMs, presents robust detection of AI-generated text, elucidates backdoor risks in diffusion models, and presents red-teaming methods for diffusion models.

Mathematical notations are clearly defined and explained throughout, making this book an invaluable resource for both newcomers and seasoned researchers in the field.



About the Author



Dr. Pin-Yu Chen is a principal research scientist at IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA. He is also the chief scientist of RPI-IBM AI Research Collaboration and PI of ongoing MIT-IBM Watson AI Lab projects. Dr. Chen received his Ph.D. in electrical engineering and computer science from the University of Michigan, Ann Arbor, USA, in 2016. Dr. Chen's recent research focuses on adversarial machine learning of neural networks for robustness and safety. His long-term research vision is to build trustworthy machine learning systems. He received the IJCAI Computers and Thought Award in 2023. He also received the IEEE GLOBECOM 2010 GOLD Best Paper Award and UAI 2022 Best Paper Runner-Up Award. At IBM Research, he received several research accomplishment awards, including IBM Master Inventor, IBM Corporate Technical Award, and IBM Pat Goldberg Memorial Best Paper. He is a co-author of the book "Adversarial Robustness for Machine Learning". He is currently on the editorial board of Transactions on Machine Learning Research and IEEE Transactions on Signal Processing. He is also an Area Chair of several AI and machine learning conferences, and a Distinguished Lecturer of ACM.

Dr. Sijia Liu is currently an Assistant Professor in the CSE department at Michigan State University and an Affiliated Professor at IBM Research. His primary research interests include trustworthy and scalable machine learning (ML), with a recent focus on machine unlearning. He has been recognized with several prestigious awards, including the NSF CAREER award in 2024, the Best Paper Runner-Up Award at the Conference on Uncertainty in Artificial Intelligence (UAI) in 2022, and the Best Student Paper Award at the 42nd IEEE ICASSP in 2017. He has published over 70 papers in top ML/AI conferences based on his record in CSRanking and co-organized several tutorials and workshops on trustworthy and scalable ML.

Dimensions (Overall): 9.21 Inches (H) x 6.14 Inches (W) x .75 Inches (D)
Weight: 1.39 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 310
Genre: Computers + Internet
Sub-Genre: Intelligence (AI) & Semantics
Publisher: Springer
Format: Hardcover
Author: Pin-Yu Chen & Sijia Liu
Language: English
Street Date: June 13, 2025
TCIN: 1007773130
UPC: 9783031767692
Item Number (DPCI): 247-33-5987
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.75 inches length x 6.14 inches width x 9.21 inches height
Estimated ship weight: 1.39 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy