Sponsored
Matrix Algebra from a Statistician's Perspective - by David A Harville (Paperback)
About this item
Highlights
- This book offers thorough and unified coverage of the fundamental concepts of matrix algebra.
- About the Author: David A. Harville is a research staff member in the Mathematical Sciences Department of the IBM T.J.Watson Research Center.
- 634 Pages
- Mathematics, Matrices
Description
About the Book
In one volume, here is comprehensive coverage of the fundamentals of matrix algebra. It will be of particular interest to those with a background in statistics. Included is a wealth of results that have thus far been available only from obscure sources.
Book Synopsis
This book offers thorough and unified coverage of the fundamental concepts of matrix algebra. Its approach will make it particularly suited to those with an interest in statistics or related disciplines. But it does much more, too: it is enlightening in specialized areas of statistics such as linear statistical models and multivariate analysis. David Harville, a former associate editor of the Journal of the American Statistical Association, ensures that the style and level of presentation make the contents accessible to a broad audience. It includes a number of very useful results that have, up to now, only been available from relatively obscure sources, and for which detailed proofs are provided. It also contains numerous exercises, the solutions to which can be found in the author's Matrix Algebra: Exercises and Solutions.
From the Back Cover
This book presents matrix algebra in a way that is well-suited for those with an interest in statistics or a related discipline. It provides thorough and unified coverage of the fundamental concepts along with the specialized topics encountered in areas of statistics such as linear statistical models and multivariate analysis. It includes a number of very useful results that have only been available from relatively obscure sources. Detailed proofs are provided for all results. The style and level of presentation are designed to make the contents accessible to a broad audience. The book is essentially self-contained, though it is best-suited for a reader who has had some previous exposure to matrices (of the kind that might be acquired in a beginning course on linear or matrix algebra). It includes exercises, it can serve as the primary text for a course on matrices or as a supplementary text in courses on such topics as linear statistical models or multivariate analysis, and it willbe a valuable reference.
David A. Harville is a research staff member emeritus in the Mathematical Sciences Department of the IBM T.J. Watson Research Center. Prior to joining the Research Center, he spent ten years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories (at Wright-Patterson, Air Force Base, Ohio), followed by twenty years as a full professor in the Department of Statistics at Iowa State University. He has extensive experience in the area of linear statistical models, having taught (on numberous occasions) M.S.- and Ph.D.-level courses on that topic, having been the thesis adviser of ten Ph.D. students, and having authored more than 70 research articles. His work has been recognized by his having been named a Fellow of the American Statistical Association and of the Institute of Mathematical Statistics, by his election as a member of the International Statistical Institute, and by his having servedas an associate editor of Biometrics and of the Journal of the American Statistical Association.
Review Quotes
From a review:
THE AUSTRALIAN AND NEW ZEALAND JOURNAL OF STATISTICS
"This is a book that will be welcomed by many statisticians at most stages of professional development. ...It is essentially a carefully sequenced and tightly interlocking collections of proofs in an elementary, though very pure mathematical style."
About the Author
David A. Harville is a research staff member in the Mathematical Sciences Department of the IBM T.J.Watson Research Center. Prior to joining the Research Center he spent ten years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories (at Wright-Patterson, FB, Ohio, followed by twenty years as a full professor in the Department of Statistics at Iowa State University. He has extensive experience in the area of linear statistical models, having taught (on numberous occasions) M.S.and Ph.D.level courses on that topic, having been the thesis adviser of 10 Ph.D. students, and having authored over 60 research articles. His work has been recognized by his election as a Fellow of the American Statistical Association and the Institute of Mathematical Statistics and as a member of the International Statistical Institute and by his having served as an associate editor of Biometrics and of the Journal of the American Statistical Association.