New ArrivalsHalloweenChristmasGift IdeasClothing, Shoes & AccessoriesHomeFurnitureElectronicsToysVideo GamesGroceryHousehold EssentialsBeautyBabyKitchen & DiningSchool & Office SuppliesMovies, Music & BooksCharacter ShopSports & OutdoorsBackpacks & LuggagePersonal CareHealthPetsUlta Beauty at TargetTarget OpticalParty SuppliesGift CardsBullseye’s PlaygroundDealsClearanceTarget New Arrivals Target Finds #TargetStyleDía de MuertosStore EventsAsian-Owned Brands at TargetBlack Beyond MeasureMás QueWomen-Owned Brands at TargetLGBTQIA+ ShopTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores
Modelling Optimization and Control of Biomedical Systems - by  Efstratios N Pistikopoulos (Hardcover) - 1 of 1

Modelling Optimization and Control of Biomedical Systems - by Efstratios N Pistikopoulos (Hardcover)

$149.95

In Stock

Eligible for registries and wish lists

Sponsored

About this item

Highlights

  • Shows the newest developments in the field of multi-parametric model predictive control and optimization and their application for drug delivery systems This book is based on the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project, which was created to derive intelligent computer model-based systems for optimization of biomedical drug delivery systems in the cases of diabetes, anaesthesia, and blood cancer.
  • About the Author: Efstratios N. Pistikopoulos, PhD, is the Interim Co-Director and Deputy Director of the Texas A&M Energy Institute, as well as a TEES Distinguished Research Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University.
  • 336 Pages
  • Technology, General

Description



Book Synopsis



Shows the newest developments in the field of multi-parametric model predictive control and optimization and their application for drug delivery systems

This book is based on the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project, which was created to derive intelligent computer model-based systems for optimization of biomedical drug delivery systems in the cases of diabetes, anaesthesia, and blood cancer. These systems can ensure reliable and fast calculation of the optimal drug dosage without the need for an online computer--while taking into account the specifics and constraints of the patient model, flexibility to adapt to changing patient characteristics and incorporation of the physician's performance criteria, and maintaining the safety of the patients.

Modelling Optimization and Control of Biomedical Systems covers: mathematical modelling of drug delivery systems; model analysis, parameter estimation, and approximation; optimization and control; sensitivity analysis & model reduction; multi-parametric programming and model predictive control; estimation techniques; physiologically-based patient model; control design for volatile anaesthesia; multiparametric model based approach to intravenous anaesthesia; hybrid model predictive control strategies; Type I Diabetes Mellitus; in vitro and in silico block of the integrated platform for the study of leukaemia; chemotherapy treatment as a process systems application; and more.

  • Introduces readers to the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project
  • Presents in detail the theoretical background, computational tools, and methods that are used in all the different biomedical systems
  • Teaches the theory for multi-parametric mixed-integer programming and explicit optimal control of volatile anaesthesia
  • Provides an overview of the framework for modelling, optimization, and control of biomedical systems

This book will appeal to students, researchers, and scientists working on the modelling, control, and optimization of biomedical systems and to those involved in cancer treatment, anaesthsia, and drug delivery systems.



From the Back Cover



Shows the Newest Developments in the Field of Multi-Parametric Model Predictive Control and Optimization and their Application for Drug Delivery Systems

This book is based on the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project, which was created to derive intelligent computer model-based systems for optimization of biomedical drug delivery systems in the cases of diabetes, anaesthesia, and blood cancer. These systems can ensure reliable and fast calculation of the optimal drug dosage without the need for an online computer--while taking into account the specifics and constraints of the patient model, flexibility to adapt to changing patient characteristics and incorporation of the physician's performance criteria, and maintaining the safety of the patients.

Modelling Optimization and Control of Biomedical Systems covers: mathematical modelling of drug delivery systems; model analysis, parameter estimation, and approximation; optimization and control; sensitivity analysis & model reduction; multi-parametric programming and model predictive control; estimation techniques; physiologically-based patient model; control design for volatile anaesthesia; multiparametric model based approach to intravenous anaesthesia; hybrid model predictive control strategies; Type I Diabetes Mellitus; in vitro and in silico block of the integrated platform for the study of leukaemia; chemotherapy treatment as a process systems application; and more.

  • Introduces readers to the Modelling, Control and Optimization of Biomedical Systems (MOBILE) project
  • Presents in detail the theoretical background, computational tools, and methods that are used in all the different biomedical systems
  • Teaches the theory for multi-parametric mixed-integer programming and explicit optimal control of volatile anaesthesia
  • Provides an overview of the framework for modelling, optimization, and control of biomedical systems

This book will appeal to students, researchers, and scientists working on the modelling, control, and optimization of biomedical systems and to those involved in cancer treatment, anaesthsia, and drug delivery systems.



About the Author



Efstratios N. Pistikopoulos, PhD, is the Interim Co-Director and Deputy Director of the Texas A&M Energy Institute, as well as a TEES Distinguished Research Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University. Professor Pistikopoulos received the Computing in Chemical Engineering Award from the American Institute of Chemical Engineers (AIChE) in 2012 and was elected Fellow of the Royal Academy of Engineering in the UK in 2013.

Ioana Nașcu, PhD, MEng, is a Postdoctoral Research Associate at Artie McFerrin Department of Chemical Engineering, Texas A&M University. Her research focuses on developing advanced multi-parametric optimization and control strategies for biomedical processes.

Eirini G. Velliou, PhD, MEng, FHEA, is Principal Investigator and founder of the Bioprocess and Biochemical Engineering Group (BioProChem) at the Department of Chemical and Process Engineering of the University of Surrey. Her research focus includes cancer tissue engineering and environmental (cancer cell) stress response.

Dimensions (Overall): 9.1 Inches (H) x 6.2 Inches (W) x .9 Inches (D)
Weight: .65 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 336
Genre: Technology
Sub-Genre: General
Publisher: Wiley
Format: Hardcover
Author: Efstratios N Pistikopoulos
Language: English
Street Date: December 29, 2017
TCIN: 1006895025
UPC: 9781118965597
Item Number (DPCI): 247-16-3368
Origin: Made in the USA or Imported
If the item details aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.9 inches length x 6.2 inches width x 9.1 inches height
Estimated ship weight: 0.65 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy