EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Optimization for Learning and Control - by Anders Hansson & Martin Andersen (Hardcover)

Optimization for Learning and Control - by  Anders Hansson & Martin Andersen (Hardcover) - 1 of 1
$116.13 sale price when purchased online
$130.00 list price
Target Online store #3991

About this item

Highlights

  • Optimization for Learning and Control Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems.
  • About the Author: Anders Hansson, PhD, is a Professor in the Department of Electrical Engineering at Linköping University, Sweden.
  • 432 Pages
  • Technology, Signals & Signal Processing

Description



About the Book



"Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems.ãA Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning. Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters' level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters' students in a coherent way"--



Book Synopsis



Optimization for Learning and Control

Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control

Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems.

Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning.

Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters' level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters' students in a coherent way. The focus is on basic algorithmic principles and trade-offs.

Optimization for Learning and Control covers sample topics such as:

  • Optimization theory and optimization methods, covering classes of optimization problems like least squares problems, quadratic problems, conic optimization problems and rank optimization.
  • First-order methods, second-order methods, variable metric methods, and methods for nonlinear least squares problems.
  • Stochastic optimization methods, augmented Lagrangian methods, interior-point methods, and conic optimization methods.
  • Dynamic programming for solving optimal control problems and its generalization to reinforcement learning.
  • How optimization theory is used to develop theory and tools of statistics and learning, e.g., the maximum likelihood method, expectation maximization, k-means clustering, and support vector machines.
  • How calculus of variations is used in optimal control and for deriving the family of exponential distributions.

Optimization for Learning and Control is an ideal resource on the subject for scientists and engineers learning about which optimization methods are useful for learning and control problems; the text will also appeal to industry professionals using machine learning for different practical applications.



From the Back Cover



Comprehensive resource providing a masters' level introduction to optimization theory and algorithms for learning and control

Optimization for Learning and Control describes how optimization is used in these domains, giving a thorough introduction to both unsupervised learning, supervised learning, and reinforcement learning, with an emphasis on optimization methods for large-scale learning and control problems.

Several applications areas are also discussed, including signal processing, system identification, optimal control, and machine learning.

Today, most of the material on the optimization aspects of deep learning that is accessible for students at a Masters' level is focused on surface-level computer programming; deeper knowledge about the optimization methods and the trade-offs that are behind these methods is not provided. The objective of this book is to make this scattered knowledge, currently mainly available in publications in academic journals, accessible for Masters' students in a coherent way. The focus is on basic algorithmic principles and trade-offs.

Optimization for Learning and Control covers sample topics such as:

  • Optimization theory and optimization methods, covering classes of optimization problems like least squares problems, quadratic problems, conic optimization problems and rank optimization.
  • First-order methods, second-order methods, variable metric methods, and methods for nonlinear least squares problems.
  • Stochastic optimization methods, augmented Lagrangian methods, interior-point methods, and conic optimization methods.
  • Dynamic programming for solving optimal control problems and its generalization to reinforcement learning.
  • How optimization theory is used to develop theory and tools of statistics and learning, e.g., the maximum likelihood method, expectation maximization, k-means clustering, and support vector machines.
  • How calculus of variations is used in optimal control and for deriving the family of exponential distributions.

Optimization for Learning and Control is an ideal resource on the subject for scientists and engineers learning about which optimization methods are useful for learning and control problems; the text will also appeal to industry professionals using machine learning for different practical applications.



About the Author



Anders Hansson, PhD, is a Professor in the Department of Electrical Engineering at Linköping University, Sweden. His research interests include the fields of optimal control, stochastic control, linear systems, signal processing, applications of control, and telecommunications.

Martin Andersen, PhD, is an Associate Professor in the Department of Applied Mathematics and Computer Science at the Technical University of Denmark. His research interests include optimization, numerical methods, signal and image processing, and systems and control.

Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x .94 Inches (D)
Weight: 2.1 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 432
Genre: Technology
Sub-Genre: Signals & Signal Processing
Publisher: Wiley
Format: Hardcover
Author: Anders Hansson & Martin Andersen
Language: English
Street Date: June 7, 2023
TCIN: 91634704
UPC: 9781119809135
Item Number (DPCI): 247-39-0225
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.94 inches length x 7 inches width x 10 inches height
Estimated ship weight: 2.1 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy