EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Quaternion Algebras - (Graduate Texts in Mathematics) by John Voight (Paperback)

Quaternion Algebras - (Graduate Texts in Mathematics) by  John Voight (Paperback) - 1 of 1
$37.19 sale price when purchased online
$37.99 list price
Target Online store #3991

About this item

Highlights

  • This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics.
  • About the Author: John Voight is Professor of Mathematics at Dartmouth College in Hanover, New Hampshire.
  • 885 Pages
  • Mathematics, Algebra
  • Series Name: Graduate Texts in Mathematics

Description



Book Synopsis



This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike.

Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unitgroups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces.

Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts andmotivation are recapped throughout.



From the Back Cover



This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike.

Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces.

Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation arerecapped throughout.



Review Quotes




"The book contains a huge amount of interesting and very well-chosen exercises. ... This 'encyclopedic' character of the text may play an important role both as a guide to some special topics and as a source of information for both students and those whose research in related fields creates a need to familiarize themselves with the knowledge of the case when quaternion algebras are relevant." (Juliusz Brzeziński, Mathematical Reviews, September, 2022)



About the Author



John Voight is Professor of Mathematics at Dartmouth College in Hanover, New Hampshire. His research interests lie in arithmetic algebraic geometry and number theory, with a particular interest in computational aspects. He has taught graduate courses in algebra, number theory, cryptography, as well as the topic of this book, quaternion algebras.

Dimensions (Overall): 9.21 Inches (H) x 6.14 Inches (W) x 1.8 Inches (D)
Weight: 2.76 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 885
Series Title: Graduate Texts in Mathematics
Genre: Mathematics
Sub-Genre: Algebra
Publisher: Springer
Theme: Abstract
Format: Paperback
Author: John Voight
Language: English
Street Date: June 30, 2022
TCIN: 90830188
UPC: 9783030574673
Item Number (DPCI): 247-49-5043
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1.8 inches length x 6.14 inches width x 9.21 inches height
Estimated ship weight: 2.76 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy