Sobolev Spaces in Mathematics II - (International Mathematical) by Vladimir Maz'ya (Hardcover)
About this item
Highlights
- Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis.
- Author(s): Vladimir Maz'ya
- 388 Pages
- Mathematics, Mathematical Analysis
- Series Name: International Mathematical
Description
About the Book
Sobolev spaces are the universal language of partial differential equations and mathematical analysis. This volume presents new results on the latest topics of the theory of Sobolev spaces, partial differential equations, analysis and mathematical physics.
Book Synopsis
Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integration of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc.
Two short biographical articles on the works of Sobolev in the 1930s and the foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included.
From the Back Cover
Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are in the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integrability of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc. Two short biographical articles on the works of Sobolev in the 1930's and foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included.
Contributors include: Vasilii Babich (Russia); Yuri Reshetnyak (Russia); Hiroaki Aikawa (Japan); Yuri Brudnyi (Israel); Victor Burenkov (Italy) and Pier Domenico Lamberti (Italy); Serban Costea (Canada) and Vladimir Maz'ya (USA-UK-Sweden); Stephan Dahlke (Germany) and Winfried Sickel (Germany); Victor Galaktionov (UK), Enzo Mitidieri (Italy), and Stanislav Pokhozhaev (Russia); Vladimir Gol'dshtein (Israel) and Marc Troyanov (Switzerland); Alexander Grigor'yan (Germany) and Elton Hsu (USA); Tunde Jakab (USA), Irina Mitrea (USA), and Marius Mitrea (USA); Sergey Nazarov (Russia); Grigori Rozenblum (Sweden) and Michael Solomyak (Israel); Hans Triebel (Germany)