EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Cleaning Data for Effective Data Science - by David Mertz (Paperback)

Cleaning Data for Effective Data Science - by  David Mertz (Paperback) - 1 of 1
$36.99 sale price when purchased online
$43.99 list price
Target Online store #3991

About this item

Highlights

  • A comprehensive guide for data scientists to master effective data cleaning tools and techniquesKey Features: Think about your data intelligently and ask the right questionsMaster data cleaning techniques using hands-on examples belonging to diverse domainsWork with detailed, commented, well-tested code samples in Python and RBook Description: In data science, data analysis, or machine learning, most of the effort needed to achieve your actual purpose lies in cleaning your data.
  • Author(s): David Mertz
  • 498 Pages
  • Computers + Internet, Machine Theory

Description



Book Synopsis



A comprehensive guide for data scientists to master effective data cleaning tools and techniques


Key Features:

  • Think about your data intelligently and ask the right questions
  • Master data cleaning techniques using hands-on examples belonging to diverse domains
  • Work with detailed, commented, well-tested code samples in Python and R


Book Description:

In data science, data analysis, or machine learning, most of the effort needed to achieve your actual purpose lies in cleaning your data. Using Python, R, and command-line tools, you will learn the essential cleaning steps performed in every production data science or data analysis pipeline. This book not only teaches you data preparation but also what questions you should ask of your data.


The book dives into the practical application of tools and techniques needed for data ingestion, anomaly detection, value imputation, and feature engineering. It also offers long-form exercises at the end of each chapter to practice the skills acquired.


You will begin by looking at data ingestion of a range of data formats. Moving on, you will impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features that are necessary for successful data analysis and visualization goals.


By the end of this book, you will have acquired a firm understanding of the data cleaning process necessary to perform real-world data science and machine learning tasks.


What You Will Learn:

  • Ingest and work with common tabular, hierarchical, and other data formats
  • Apply useful rules and heuristics for assessing data quality and detecting bias
  • Identify and handle unreliable data and outliers in their many forms
  • Impute sensible values into missing data and use sampling to fix imbalances
  • Generate synthetic features that help to draw out patterns in your data
  • Prepare data competently and correctly for analytic and machine learning tasks


Who this book is for:

This book is designed to benefit software developers, data scientists, aspiring data scientists, and students who are interested in data analysis or scientific computing. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful. The text will also be helpful to intermediate and advanced data scientists who want to improve their rigor in data hygiene and wish for a refresher on data preparation issues.

Dimensions (Overall): 9.25 Inches (H) x 7.5 Inches (W) x 1.0 Inches (D)
Weight: 1.87 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 498
Genre: Computers + Internet
Sub-Genre: Machine Theory
Publisher: Packt Publishing
Format: Paperback
Author: David Mertz
Language: English
Street Date: March 31, 2021
TCIN: 92767580
UPC: 9781801071291
Item Number (DPCI): 247-28-4571
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1 inches length x 7.5 inches width x 9.25 inches height
Estimated ship weight: 1.87 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy