EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Deep Learning for Physical Scientists - by Edward O Pyzer-Knapp & Matthew Benatan (Hardcover)

Deep Learning for Physical Scientists - by  Edward O Pyzer-Knapp & Matthew Benatan (Hardcover) - 1 of 1
$73.95 when purchased online
Target Online store #3991

About this item

Highlights

  • Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences.
  • About the Author: Dr Edward O. Pyzer-Knapp is the worldwide lead for AI Enriched Modelling and Simulation at IBM Research.
  • 208 Pages
  • Science, Chemistry

Description



About the Book



"The rise of data-driven technologies such as machine learning has had wide ranging impacts, not least in the realm of physical sciences, where it is transforming the traditional mind-set about how research can, and should, be performed. Deep learning is an exciting new development in the area of machine learning, containing many powerful techniques which can benefit researchers in the physical sciences"--



Book Synopsis



Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field

Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome.

Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader.

From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy:

  • A thorough introduction to the basic classification and regression with perceptrons
  • An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training
  • An examination of multi-layer perceptrons for learning from descriptors and de-noising data
  • Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images
  • A treatment of Bayesian optimization for tuning deep learning architectures

Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.



From the Back Cover



Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field

Deep Learning for Physical Scientists: Accelerating Research with Machine Learning delivers an insightful analysis of the transformative techniques being used in deep learning within the physical sciences. The book offers readers the ability to understand, select, and apply the best deep learning techniques for their individual research problem and interpret the outcome.

Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader.

From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy:

  • A thorough introduction to the basic classification and regression with perceptrons
  • An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training
  • An examination of multi-layer perceptrons for learning from descriptors and de-noising data
  • Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images
  • A treatment of Bayesian optimization for tuning deep learning architectures

Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.



About the Author



Dr Edward O. Pyzer-Knapp is the worldwide lead for AI Enriched Modelling and Simulation at IBM Research. Previously, he obtained his PhD from the University of Cambridge using state of the art computational techniques to accelerate materials design then moving to Harvard where he was in charge of the day-to-day running of the Harvard Clean Energy Project - a collaboration with IBM which combined massive distributed computing, quantum-mechanical simulations, and machine-learning to accelerate discovery of the next generation of organic photovoltaic materials. He is also the Visiting Professor of Industrially Applied AI at the University of Liverpool, and the Editor in Chief for Applied AI Letters, a journal with a focus on real-world application and validation of AI.

Dr Matt Benatan received his PhD in Audio-Visual Speech Processing from the University of Leeds, after which he went on to pursue a career in AI research within industry. His work to date has involved the research and development of AI techniques for a broad variety of domains, from applications in audio processing through to materials discovery. His research interests include Computer Vision, Signal Processing, Bayesian Optimization, and Scalable Bayesian Inference.

Dimensions (Overall): 9.0 Inches (H) x 6.0 Inches (W) x .5 Inches (D)
Weight: .99 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 208
Genre: Science
Sub-Genre: Chemistry
Publisher: Wiley
Theme: Physical & Theoretical
Format: Hardcover
Author: Edward O Pyzer-Knapp & Matthew Benatan
Language: English
Street Date: September 20, 2021
TCIN: 1005531276
UPC: 9781119408338
Item Number (DPCI): 247-02-0972
Origin: Made in the USA or Imported

Shipping details

Estimated ship dimensions: 0.5 inches length x 6 inches width x 9 inches height
Estimated ship weight: 0.99 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Trending Non-Fiction

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member ServicesLegal & Privacy

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacy PolicyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy