EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Deep Reinforcement Learning for Wireless Communications and Networking - (Hardcover)

Deep Reinforcement Learning for Wireless Communications and Networking - (Hardcover) - 1 of 1
$119.88 sale price when purchased online
$135.00 list price
Target Online store #3991

About this item

Highlights

  • Deep Reinforcement Learning for Wireless Communications and Networking Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice.
  • About the Author: Dinh Thai Hoang, Ph.D., is a faculty member at the University of Technology Sydney, Australia.
  • 288 Pages
  • Technology, Mobile & Wireless Communications

Description



About the Book



"This book provides fundamental background on Deep Reinforcement Learning (DRL) and then studies recent advances in DRL to address practical challenges in wireless communications and networking. In particular, this book first gives a tutorial of DRL from basic concepts to advanced modelling techniques to motivate and provide fundamental knowledge for the readers. The authors then provide case studies together with implementation details to help readers better understand how to practice and apply DRL to their problems. After that, they review DRL approaches that address emerging issues in communications and networking. Finally, the authors highlight important challenges, open issues, and future research directions of applying DRL in wireless networks."--



Book Synopsis



Deep Reinforcement Learning for Wireless Communications and Networking

Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems

Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking.

Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design.

Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as:

  • Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning
  • Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security
  • Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association
  • Network layer applications, covering traffic routing, network classification, and network slicing

With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.



From the Back Cover



Comprehensive guide to Deep Reinforcement Learning (DRL) as applied to wireless communication systems

Deep Reinforcement Learning for Wireless Communications and Networking presents an overview of the development of DRL while providing fundamental knowledge about theories, formulation, design, learning models, algorithms and implementation of DRL together with a particular case study to practice. The book also covers diverse applications of DRL to address various problems in wireless networks, such as caching, offloading, resource sharing, and security. The authors discuss open issues by introducing some advanced DRL approaches to address emerging issues in wireless communications and networking.

Covering new advanced models of DRL, e.g., deep dueling architecture and generative adversarial networks, as well as emerging problems considered in wireless networks, e.g., ambient backscatter communication, intelligent reflecting surfaces and edge intelligence, this is the first comprehensive book studying applications of DRL for wireless networks that presents the state-of-the-art research in architecture, protocol, and application design.

Deep Reinforcement Learning for Wireless Communications and Networking covers specific topics such as:

  • Deep reinforcement learning models, covering deep learning, deep reinforcement learning, and models of deep reinforcement learning
  • Physical layer applications covering signal detection, decoding, and beamforming, power and rate control, and physical-layer security
  • Medium access control (MAC) layer applications, covering resource allocation, channel access, and user/cell association
  • Network layer applications, covering traffic routing, network classification, and network slicing

With comprehensive coverage of an exciting and noteworthy new technology, Deep Reinforcement Learning for Wireless Communications and Networking is an essential learning resource for researchers and communications engineers, along with developers and entrepreneurs in autonomous systems, who wish to harness this technology in practical applications.



About the Author



Dinh Thai Hoang, Ph.D., is a faculty member at the University of Technology Sydney, Australia. He is also an Associate Editor of IEEE Communications Surveys & Tutorials and an Editor of IEEE Transactions on Wireless Communications, IEEE Transactions on Cognitive Communications and Networking, and IEEE Transactions on Vehicular Technology.

Nguyen Van Huynh, Ph.D., obtained his Ph.D. from the University of Technology Sydney in 2022. He is currently a Research Associate in the Department of Electrical and Electronic Engineering, Imperial College London, UK.

Diep N. Nguyen, Ph.D., is Director of Agile Communications and Computing Group and a member of the Faculty of Engineering and Information Technology at the University of Technology Sydney, Australia.

Ekram Hossain, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at the University of Manitoba, Canada, and a Fellow of the IEEE. He co-authored the Wiley title Radio Resource Management in Multi-Tier Cellular Wireless Networks (2013).

Dusit Niyato, Ph.D., is a Professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore. He co-authored the Wiley title Radio Resource Management in Multi-Tier Cellular Wireless Networks (2013).

Dimensions (Overall): 9.0 Inches (H) x 6.0 Inches (W) x .69 Inches (D)
Weight: 1.22 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Mobile & Wireless Communications
Genre: Technology
Number of Pages: 288
Publisher: Wiley-IEEE Press
Format: Hardcover
Author: Dinh Thai Hoang & Nguyen Van Huynh & Diep N Nguyen & Ekram Hossain & Dusit Niyato
Language: English
Street Date: July 25, 2023
TCIN: 93288690
UPC: 9781119873679
Item Number (DPCI): 247-42-2558
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.69 inches length x 6 inches width x 9 inches height
Estimated ship weight: 1.22 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy