EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Sponsored

Optimization of Energy Systems - by Ibrahim Dincer & Marc A Rosen & Pouria Ahmadi (Hardcover)

Optimization of Energy Systems - by  Ibrahim Dincer & Marc A Rosen & Pouria Ahmadi (Hardcover) - 1 of 1
$127.96 sale price when purchased online
$152.95 list price
Target Online store #3991

About this item

Highlights

  • An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications.
  • About the Author: IBRAHIM DINCER is a tenured full professor of Mechanical Engineering in the Faculty of Engineering and Applied Science at UOIT.
  • 480 Pages
  • Technology, Mechanical

Description



Book Synopsis



An essential resource for optimizing energy systems to enhance design capability, performance and sustainability

Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability.

Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction.

Key features:

  • Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications.
  • Examples, practical applications and case studies to put theory into practice.
  • Study problems at the end of each chapter that foster critical thinking and skill development.
  • Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities.

A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.



From the Back Cover



An essential resource for optimizing energy systems to enhance design capability, performance and sustainability

Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability.

Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction.

Key features:

  • Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications.
  • Examples, practical applications and case studies to put theory into practice.
  • Study problems at the end of each chapter that foster critical thinking and skill development.
  • Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities.

A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.



About the Author



IBRAHIM DINCER is a tenured full professor of Mechanical Engineering in the Faculty of Engineering and Applied Science at UOIT. He is Vice President for Strategy in International Association for Hydrogen Energy (IAHE) and Vice-President for World Society of Sustainable Energy Technologies (WSSET). Renowned for his pioneering works in the area of sustainable energy technologies he has authored and co-authored numerous books and book chapters, more than a thousand refereed journal and conference papers, and many technical reports. He has chaired many national and international conferences, symposia, workshops and technical meetings. He has delivered more than 300 keynote and invited lectures. He is an active member of various international scientific organizations and societies, and serves as editor-in-chief, associate editor, regional editor, and editorial board member on various prestigious international journals. He is a recipient of several research, teaching and service awards, including the Premier's research excellence award in Ontario, Canada, in 2004.

MARC A. ROSEN is a professor of Mechanical Engineering at the University of Ontario Institute of Technology in Oshawa, Canada, where he served as founding Dean of Engineering and Applied Science. Dr. Rosen is an active teacher and researcher in thermodynamics, energy technology, sustainable energy and the environmental impact of energy and industrial systems. He is a registered Professional Engineer in Ontario, and has served in many professional capacities, including being founding Editor-in-Chief of several journals, and a Director of Oshawa Power and Utilities Corporation. A Past-President of the Engineering Institute of Canada and the Canadian Society for Mechanical Engineering, Dr. Rosen received an Award of Excellence in Research and Technology Development from the Ontario Ministry of Environment and Energy, and is a Fellow of the Engineering Institute of Canada, the American Society of Mechanical Engineers, the Canadian Society for Mechanical Engineering, the Canadian Academy of Engineering and the International Energy Foundation.

POURIA AHMADI is a postdoctoral fellow in the Fuel Cell Research group at Simon Fraser University (SFU). He earned his PhD in 2013 in mechanical engineering at the Clean Energy Research Lab at University of Ontario Institute of Technology, Canada. There, he worked on the design, analysis and optimization of advanced integrated energy systems for enhanced sustainability. Prior to joining SFU, he was a postdoctoral fellow at Ryerson University in Toronto, Ontario, where he worked on integrated renewable energy technologies for a net zero energy community in London, Ontario, Canada. He also worked as a research assistant and PhD student at the advanced heat transfer lab at Sharif University of Technology, Tehran, Iran. He has 65 publications in both high ranked and peer-reviewed journals and international conference proceedings.

Dimensions (Overall): 9.7 Inches (H) x 6.6 Inches (W) x 1.1 Inches (D)
Weight: 1.98 Pounds
Suggested Age: 22 Years and Up
Sub-Genre: Mechanical
Genre: Technology
Number of Pages: 480
Publisher: Wiley
Format: Hardcover
Author: Ibrahim Dincer & Marc A Rosen & Pouria Ahmadi
Language: English
Street Date: May 15, 2017
TCIN: 93631501
UPC: 9781118894439
Item Number (DPCI): 247-02-4978
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 1.1 inches length x 6.6 inches width x 9.7 inches height
Estimated ship weight: 1.98 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyOpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy