EasterBlack-owned or founded brands at TargetGroceryClothing, Shoes & AccessoriesBabyHomeFurnitureKitchen & DiningOutdoor Living & GardenToysElectronicsVideo GamesMovies, Music & BooksSports & OutdoorsBeautyPersonal CareHealthPetsHousehold EssentialsArts, Crafts & SewingSchool & Office SuppliesParty SuppliesLuggageGift IdeasGift CardsClearanceTarget New ArrivalsTarget Finds#TargetStyleTop DealsTarget Circle DealsWeekly AdShop Order PickupShop Same Day DeliveryRegistryRedCardTarget CircleFind Stores

Deep Learning on Embedded Systems - by Tariq M Arif (Hardcover)

Deep Learning on Embedded Systems - by  Tariq M Arif (Hardcover) - 1 of 1
$95.99 when purchased online
Target Online store #3991

About this item

Highlights

  • About the Author: Tariq M. Arif, PhD, is an Associate Professor at WSU since 2019.
  • 256 Pages
  • Technology, Electronics

Description



About the Book



"Preface The field of Artificial intelligence has undergone a significant transformation in the last decade, moving from traditional machine learning approaches to more sophisticated deep learning techniques. This evolution has brought extraordinary advancements across various industries, including healthcare, finance, transportation, manufacturing, robotics, and consumer technology. For this reason, there is a growing need to incorporate deep learning technology in various research projects and academic curricula. As customizable embedded devices become more affordable and portable for deploying AI models, the growing demand for exploring this technology is also spreading across all age groups, from children to the elderly. This book aims to address this demand and serves as a comprehensive hands-on guide to understanding the integration of deep learning with modern embedded systems, such as Jetson Nano and Raspberry Pi. It also focuses on the key components of deep learning models in simple terms without diving deeply into the statistical or mathematical theories behind them. A basic understanding of Python programming is necessary to follow the examples, as all the programs in this book are written in Python. The book introduces key concepts of deep learning and its architectures in chapters 2 and 3. Chapter 4 includes the configuration of the Windows PC used for setting up PyTorch and its related packages. This chapter also explains basic tensor operations using PyTorch. Chapter 5 and Chapter 13 include Jetson Nano and Raspberry Pi 5 configurations, respectively, along with the list of peripherals used for deploying deep learning models. As the operation of Jetson Nano and Raspberry Pi 5 involves using Linux terminals, Chapter 6 covers basic Linux terminal commands, focusing on file management and permissions. This chapter will be beneficial for readers who are unfamiliar with the Linux operating system. Chapter 7 presents the fundamentals of setting up the Docker engines and building Docker images, and demonstrates how to perform model inference within Jetson's Docker container. Chapter 11 explains how to create a deep-learning dataset for image classification and object detection using bounding boxes. The dataset developed in this chapter is utilized for model training in Chapters 9 and 10. Chapter 9 outlines the process for training a classification model, while Chapter 10 demonstrates the approach for training an object detection model with image classification"--



From the Back Cover



Comprehensive, accessible introduction to deep learning for engineering tasks through Python programming, low-cost hardware, and freely available software

Deep Learning on Embedded Systems is a comprehensive guide to the practical implementation of deep learning for engineering tasks through computers and embedded hardware such as Raspberry Pi and Nvidia Jetson Nano. After an introduction to the field, the book provides fundamental knowledge on deep learning, convolutional and recurrent neural networks, computer vision, and basics of Linux terminal and docker engines. This book shows detailed setup steps of Jetson Nano and Raspberry Pi for utilizing essential frameworks such as PyTorch and OpenCV. GPU configuration and dependency installation procedure for using PyTorch is also discussed allowing newcomers to seamlessly navigate the learning curve.

A key challenge of utilizing deep learning on embedded systems is managing limited GPU and memory resources. This book outlines a strategy of training complex models on a desktop computer and transferring them to embedded systems for inference. Also, students and researchers often face difficulties with the varying probabilistic theories and notations found in data science literature. To simplify this, the book mainly focuses on the practical implementation part of deep learning using Python programming, low-cost hardware, and freely available software such as Anaconda and Visual Studio Code. To aid in reader learning, questions and answers are included at the end of most chapters.

Written by a highly qualified author, Deep Learning on Embedded Systems includes discussion on:

  • Fundamentals of deep learning, including neurons and layers, activation functions, network architectures, hyperparameter tuning, and convolutional and recurrent neural networks (CNNs & RNNs)
  • PyTorch, OpenCV, and other essential framework setups for deep transfer learning, along with Linux terminal operations, docker engine, docker images, and virtual environments in embedded devices
  • Training models for image classification and object detection with classification, then converting trained PyTorch models to ONNX format for efficient deployment on Jetson Nano and Raspberry Pi

Deep Learning on Embedded Systems serves as an excellent introduction to the field for undergraduate engineering students seeking to learn deep learning implementations for their senior capstone or class projects and graduate researchers and educators who wish to implement deep learning in their research.



About the Author



Tariq M. Arif, PhD, is an Associate Professor at WSU since 2019. Prior to that, he worked at the University of Wisconsin, Platteville. His primary research interests include artificial intelligence and genetic algorithms for robotics control, computer vision, and biomedical simulations involving machine learning algorithms. He also worked in the Japanese automobile industry for three and a half years as a CAD/CAE engineer.

Dimensions (Overall): 10.0 Inches (H) x 7.0 Inches (W) x .63 Inches (D)
Weight: 1.47 Pounds
Suggested Age: 22 Years and Up
Number of Pages: 256
Genre: Technology
Sub-Genre: Electronics
Publisher: Wiley
Theme: Microelectronics
Format: Hardcover
Author: Tariq M Arif
Language: English
Street Date: April 15, 2025
TCIN: 1004456909
UPC: 9781394269266
Item Number (DPCI): 247-34-6725
Origin: Made in the USA or Imported
If the item details above aren’t accurate or complete, we want to know about it.

Shipping details

Estimated ship dimensions: 0.63 inches length x 7 inches width x 10 inches height
Estimated ship weight: 1.47 pounds
We regret that this item cannot be shipped to PO Boxes.
This item cannot be shipped to the following locations: American Samoa (see also separate entry under AS), Guam (see also separate entry under GU), Northern Mariana Islands, Puerto Rico (see also separate entry under PR), United States Minor Outlying Islands, Virgin Islands, U.S., APO/FPO

Return details

This item can be returned to any Target store or Target.com.
This item must be returned within 90 days of the date it was purchased in store, shipped, delivered by a Shipt shopper, or made ready for pickup.
See the return policy for complete information.

Related Categories

Get top deals, latest trends, and more.

Privacy policy

Footer

About Us

About TargetCareersNews & BlogTarget BrandsBullseye ShopSustainability & GovernancePress CenterAdvertise with UsInvestorsAffiliates & PartnersSuppliersTargetPlus

Help

Target HelpReturnsTrack OrdersRecallsContact UsFeedbackAccessibilitySecurity & FraudTeam Member Services

Stores

Find a StoreClinicPharmacyTarget OpticalMore In-Store Services

Services

Target Circle™Target Circle™ CardTarget Circle 360™Target AppRegistrySame Day DeliveryOrder PickupDrive UpFree 2-Day ShippingShipping & DeliveryMore Services
PinterestFacebookInstagramXYoutubeTiktokTermsCA Supply ChainPrivacyCA Privacy RightsYour Privacy ChoicesInterest Based AdsHealth Privacy Policy